Multiobjective variable mesh optimization

被引:4
作者
Salgueiro, Yamisleydi [1 ]
Toro, Jorge L. [1 ]
Bello, Rafael [2 ]
Falcon, Rafael [3 ]
机构
[1] Univ Las Tunas, Informat Dept, Las Tunas, Cuba
[2] Cent Univ Las Villas, Comp Sci Dept, Santa Clara, Cuba
[3] Univ Ottawa, Elect Engn & Comp Sci, Ottawa, ON, Canada
关键词
Multi-objective optimization; Evolutionary computation; Variable mesh optimization; Meta-heuristic optimization; GENETIC ALGORITHM; EVOLUTIONARY ALGORITHMS; PERFORMANCE; MOEA/D;
D O I
10.1007/s10479-016-2221-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this article we introduce a new multiobjective optimizer based on a recently proposed metaheuristic algorithm named Variable Mesh Optimization (VMO). Our proposal (multiobjective VMO, MOVMO) combines typical concepts from the multiobjective optimization arena such as Pareto dominance, density estimation and external archive storage. MOVMO also features a crossover operator between local and global optima as well as dynamic population replacement. We evaluated MOVMO using a suite of four well-known benchmark function families, and against seven state-of-the-art optimizers: NSGA-II, SPEA2, MOCell, AbYSS, SMPSO, MOEA/D and MOEA/D.DRA. The statistically validated results across the additive epsilon, spread and hypervolume quality indicators confirm that MOVMO is indeed a competitive and effective method for multiobjective optimization of numerical spaces.
引用
收藏
页码:869 / 893
页数:25
相关论文
共 26 条
[1]  
[Anonymous], 2001, P 5 C EVOLUTIONARY M
[2]  
[Anonymous], 2013, Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, DOI DOI 10.1007/978-1-4614-6940-7_15
[3]  
Deb K, 2004, ADV INFO KNOW PROC, P105
[4]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[5]  
Deb K, 2008, LECT NOTES COMPUT SC, V5252, P59, DOI 10.1007/978-3-540-88908-3_3
[6]   A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms [J].
Derrac, Joaquin ;
Garcia, Salvador ;
Molina, Daniel ;
Herrera, Francisco .
SWARM AND EVOLUTIONARY COMPUTATION, 2011, 1 (01) :3-18
[7]   jMetal: A Java']Java framework for multi-objective optimization [J].
Durillo, Juan J. ;
Nebro, Antonio J. .
ADVANCES IN ENGINEERING SOFTWARE, 2011, 42 (10) :760-771
[8]  
Huband S, 2005, LECT NOTES COMPUT SC, V3410, P280
[9]  
Knowles J., 2006, ATUTORIAL PERFORMANC
[10]   Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II [J].
Li, Hui ;
Zhang, Qingfu .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2009, 13 (02) :284-302