Comparison arguments and decay estimates in non-linear viscoelasticity

被引:17
|
作者
Quintanilla, R [1 ]
机构
[1] Univ Politecn Catalunya, Dept Matemat Aplicaca 2, Barcelona, Spain
关键词
spatial estimates; evolution equations; non-linear viscoelasticity; comparison arguments;
D O I
10.1016/S0020-7462(02)00127-0
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In a recent paper two Phragmen-Lindelof growth-decay estimates were derived for solutions of initial boundary problems arising in anti-plane shear dynamic deformations in the non-linear theory of viscoelasticity. In particular the results apply to the sub-linear family of power-law materials. In this paper we improve the decay estimates. We prove that the rate of decay is bounded below by an exponential of a second degree polynomial of the distance from the end. The main tool is the use of the comparison methods in a similar way to their use for parabolic problems. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:55 / 61
页数:7
相关论文
共 50 条
  • [1] LINEAR AND NON-LINEAR VISCOELASTICITY
    MARKOVIT.H
    RUBBER AGE, 1970, 102 (03): : 72 - &
  • [2] Non-linear viscoelasticity
    Schmachtenberg, E
    Brandt, M
    KUNSTSTOFFE-PLAST EUROPE, 2004, 94 (06): : 89 - 93
  • [3] LINEAR AND NON-LINEAR VISCOELASTICITY OF GLASS
    REKHSON, SM
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1980, 42 (1-3) : 185 - 185
  • [4] NON-LINEAR DYNAMIC VISCOELASTICITY
    POWELL, RL
    SCHWARZ, WH
    JOURNAL OF RHEOLOGY, 1979, 23 (03) : 323 - 352
  • [5] EXPONENTIAL DECAY ESTIMATES FOR A CLASS OF NON-LINEAR DIRICHLET PROBLEMS
    HORGAN, CO
    OLMSTEAD, WE
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1979, 71 (03) : 221 - 235
  • [6] Existence and decay in non linear viscoelasticity
    Rivera, JEM
    Gómez, FPQ
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2003, 6B (01): : 1 - 37
  • [7] A THERMODYNAMIC APPROACH TO NON-LINEAR VISCOELASTICITY
    RODRIGUEZ, RF
    DEHARO, ML
    MANERO, O
    RHEOLOGICA ACTA, 1988, 27 (03) : 217 - 223
  • [8] Non-linear viscoelasticity of hagfish slime
    Ewoldt, Randy H.
    Winegard, Timothy M.
    Fudge, Douglas S.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2011, 46 (04) : 627 - 636
  • [9] NETWORK THEORY OF NON-LINEAR VISCOELASTICITY
    HAYASHI, S
    POLYMER JOURNAL, 1978, 10 (01) : 59 - 67
  • [10] ON UNIQUENESS AND BIFURCATION IN NON-LINEAR VISCOELASTICITY
    GURTIN, ME
    REYNOLDS, DW
    SPECTOR, SJ
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1980, 72 (04) : 303 - 313