Characterizations of robust optimality conditions via image space analysis

被引:12
作者
Ansari, Q. H. [1 ,2 ]
Sharma, P. K. [1 ,3 ,4 ]
Qin, X. [5 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh, Uttar Pradesh, India
[2] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran, Saudi Arabia
[3] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung, Taiwan
[4] China Med Univ, Ctr Gen Educ, Taichung, Taiwan
[5] Hangzhou Normal Univ, Dept Math, Hangzhou, Zhejiang, Peoples R China
关键词
Robust optimality conditions; nonlinear scalarization; image space analysis; uncertain optimization; shortest path problem; UNCERTAIN MULTIOBJECTIVE OPTIMIZATION; VARIATIONAL-INEQUALITIES; EFFICIENCY;
D O I
10.1080/02331934.2020.1728269
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we consider general scalar robust optimization problems and study the characterizations for optimality conditions in the general vector spaces where we do not require any topology on the considered space. By using the image space analysis and nonlinear separation function, we derive some necessary and sufficient optimality conditions, especially saddle point sufficient optimality conditions for scalar robust optimization problems. Moreover, we discuss the validity and effectiveness of our results for the shortest path problem.
引用
收藏
页码:2063 / 2083
页数:21
相关论文
共 22 条
[1]   Weak efficiency in vector optimization using a closure of algebraic type under cone-convexlikeness [J].
Adán, M ;
Novo, V .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2003, 149 (03) :641-653
[2]   Characterizations of Multiobjective Robustness via Oriented Distance Function and Image Space Analysis [J].
Ansari, Qamrul Hasan ;
Koebis, Elisabeth ;
Sharma, Pradeep Kumar .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 181 (03) :817-839
[3]   Characterizations of set relations with respect to variable domination structures via oriented distance function [J].
Ansari, Qamrul Hasan ;
Koebis, Elisabeth ;
Sharma, Pradeep Kumar .
OPTIMIZATION, 2018, 67 (09) :1389-1407
[4]  
BenTal A, 2009, PRINC SER APPL MATH, P1
[5]  
Birge JR, 2011, SPRINGER SER OPER RE, P3, DOI 10.1007/978-1-4614-0237-4
[6]   Image Space Analysis for Constrained Inverse Vector Variational Inequalities via Multiobjective Optimization [J].
Chen, Jiawei ;
Koebis, Elisabeth ;
Koebis, Markus ;
Yao, Jen-Chih .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 177 (03) :816-834
[7]   Introducing robustness in multi-objective optimization [J].
Deb, Kalyanmoy ;
Gupta, Himanshu .
EVOLUTIONARY COMPUTATION, 2006, 14 (04) :463-494
[8]   Minmax robustness for multi-objective optimization problems [J].
Ehrgott, Matthias ;
Ide, Jonas ;
Schoebel, Anita .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2014, 239 (01) :17-31
[9]   NONCONVEX SEPARATION THEOREMS AND SOME APPLICATIONS IN VECTOR OPTIMIZATION [J].
GERTH, C ;
WEIDNER, P .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1990, 67 (02) :297-320
[10]  
GIANNESSI F., 2005, MATH C SCI, V1