Revisiting LiClO4 as an electrolyte for Li-ion battery: Effect of aggregation behavior on ion-pairing dynamics and conductance

被引:16
作者
Kartha, Thejus R. [1 ]
Mallik, Bhabani S. [1 ]
机构
[1] Indian Inst Technol Hyderabad, Dept Chem, Sangareddy 502285, Telangana, India
关键词
MOLECULAR-DYNAMICS; LITHIUM-ION; ETHYLENE CARBONATE; DIELECTRIC POLARIZATION; TEMPERATURE-DEPENDENCE; PROPYLENE CARBONATE; SULFOLANE MIXTURES; POLYMER BATTERY; SOLVENT BLENDS; SIMULATION;
D O I
10.1016/j.molliq.2020.112536
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A mixture of 0.5 M LiClO4 in 80% tetramethylsulfone (TMS) and 20% propylene carbonate (PC) was investigated through classical molecular dynamics simulations to understand properties that could make this a possible candidate for a better electrolyte for lithium-ion battery. The structural analysis through radial distribution function (RDF) reveals the strong interactions between Li+ and ClO4- ions, which increase with the increase in temperature. The interaction between the cation and the solvent molecules is found to be weaker than the cation-anion interactions. However, with an increase in temperature, the cation-TMS interactions decrease while the cationPC interactions increase. There are prominent, sharp peaks in RDFs, which indicate an aggregating character of the ions in the system with pronounced effects in transport properties. The increase in temperature suggests a faster formation of these aggregates. The ions in this system show moderate ion transport and ionic conductivity. The obtained theoretical results were compared with the experimental data at the reported temperature. The value of correlated conductivity (0.24 mS cm(-1)) is in good agreement with the experimental (0.21 mS cm(-1)) results of 0.5 M LiClO4 in PC. Ionic conductivities were calculated for the various temperatures; it increases with increase in temperature. Conductivity calculated by either method shows Arrhenius behavior; the activation energy for ionic conduction is also discussed. From the dielectric calculations, it is observed that the dielectric constant of TMS decreases with an increase in temperature; this is the reason for the increased aggregating character of entities as the temperature increases. The model used in this study also provided values for the dielectric constant that was not very deviating from the experimental results. Understanding this feature, we also propose the concentration of electrolyte that shows enhanced conductivity by changing the TMS-PC proportions in the mixture. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 61 条
[1]   Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles [J].
Al-Zareer, Maan ;
Dincer, Ibrahim ;
Rosen, Marc A. .
JOURNAL OF POWER SOURCES, 2017, 363 :291-303
[2]  
Allen M. P., 1989, COMPUTER SIMULATION
[3]  
[Anonymous], J ELECTROCHEM SOC
[4]   Lithium-Ion Conducting Electrolyte Salts for Lithium Batteries [J].
Aravindan, Vanchiappan ;
Gnanaraj, Joe ;
Madhavi, Srinivasan ;
Liu, Hua-Kun .
CHEMISTRY-A EUROPEAN JOURNAL, 2011, 17 (51) :14326-14346
[5]   Relative permittivities, densities, and refractive indices of the binary mixtures of sulfolane with ethylene glycol, diethylene glycol, and poly(ethylene glycol) at 303.15 K [J].
Awwad, AM ;
Al-Dujaili, AH ;
Salman, HE .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2002, 47 (03) :421-424
[6]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[7]   GROMACS - A MESSAGE-PASSING PARALLEL MOLECULAR-DYNAMICS IMPLEMENTATION [J].
BERENDSEN, HJC ;
VANDERSPOEL, D ;
VANDRUNEN, R .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 91 (1-3) :43-56
[8]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[9]   TRAVIS - A Free Analyzer and Visualizer for Monte Carlo and Molecular Dynamics Trajectories [J].
Brehm, Martin ;
Kirchner, Barbara .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2011, 51 (08) :2007-2023
[10]  
Brodd RJ, 2000, MACROMOL SYMP, V159, P229, DOI 10.1002/1521-3900(200010)159:1<229::AID-MASY229>3.0.CO