Robust Detection of Periodic Patterns in Gene Expression Microarray Data using Topological Signal Analysis

被引:0
作者
Emrani, Saba [1 ]
Krim, Hamid [1 ]
机构
[1] North Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA
来源
2014 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP) | 2014年
关键词
Gene expression; microarrays; topological signal analysis; periodicity detection; biomedical signal processing; IDENTIFICATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a new approach for analyzing gene expression data that builds on topological characteristics of time series. Our goal is to identify cell cycle regulated genes in micro array dataset. We construct a point cloud out of time series using delay coordinate embeddings. Persistent homology is utilized to analyse the topology of the point cloud for detection of periodicity. This novel technique is accurate and robust to noise, missing data points and varying sampling intervals. Our experiments using Yeast Saccharomyces cerevisiae dataset substantiate the capabilities of the proposed method.
引用
收藏
页码:1406 / 1409
页数:4
相关论文
共 50 条
  • [41] A Machine Learning Method to Trace Cancer Primary Lesion Using Microarray-Based Gene Expression Data
    Lu, Qingfeng
    Chen, Fengxia
    Li, Qianyue
    Chen, Lihong
    Tong, Ling
    Tian, Geng
    Zhou, Xiaohong
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [42] Robust complementary hierarchical clustering for gene expression data analysis by β-divergence
    Badsha, Md. Bahadur
    Mollah, Md. Nurul Hague
    Jahan, Nusrat
    Kurata, Hiroyuki
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2013, 116 (03) : 397 - 407
  • [43] Robust Modeling of Differential Gene Expression Data Using Normal/Independent Distributions: A Bayesian Approach
    Ganjali, Mojtaba
    Baghfalaki, Taban
    Berridge, Damon
    PLOS ONE, 2015, 10 (04):
  • [44] Microarray analysis of gene expression patterns in Arabidopsis seedlings under trehalose, sucrose and sorbitol treatment
    Aghdasi, M.
    Smeekens, S.
    Schluepman, H.
    INTERNATIONAL JOURNAL OF PLANT PRODUCTION, 2008, 2 (04) : 309 - 320
  • [45] Microarray data mining using gene ontology
    Li, Songhui
    Becich, Michael J.
    Studies in Health Technology and Informatics, 2004, 107 : 778 - 782
  • [46] Microarray data mining using gene ontology
    Li, SH
    Becich, MJ
    Gilbertson, J
    MEDINFO 2004: PROCEEDINGS OF THE 11TH WORLD CONGRESS ON MEDICAL INFORMATICS, PT 1 AND 2, 2004, 107 : 778 - 782
  • [47] A note on joint versus gene-specific mixed model analysis of microarray gene expression data
    Hoeschele, I
    Li, H
    BIOSTATISTICS, 2005, 6 (02) : 183 - 186
  • [48] Insights into gene expression responses to infections in teleosts using microarray data: a systematic review
    Caruffo, Mario
    Mandakovic, Dinka
    Cabrera, Pablo
    Pacheco, Igor
    Montt, Liliana
    Chavez-Baez, Ignacio
    Mejias, Madelaine
    Vera-Tamargo, Francisca
    Perez-Valenzuela, Javiera
    Carrasco-Labra, Alonso
    Pulgar, Rodrigo
    REVIEWS IN AQUACULTURE, 2021, 13 (01) : 18 - 42
  • [49] Analysis of Gene Expression Data Using BRB-Array Tools
    Simon, Richard
    Lam, Amy
    Li, Ming-Chung
    Ngan, Michael
    Menenzes, Supriya
    Zhao, Yingdong
    CANCER INFORMATICS, 2007, 3 : 11 - 17
  • [50] Automated analysis of multivariate nonlinear gene relations based on cDNA microarray expression data
    Kim, SC
    Dougherty, ER
    Bittner, ML
    Chen, YD
    Sivakumar, K
    Meltzer, P
    Trent, JM
    ADVANCES IN NUCLEIC ACID AND PROTEIN ANALYSES, MANIPULATION, AND SEQUENCING, 2000, 1 : 150 - 155