Robust Detection of Periodic Patterns in Gene Expression Microarray Data using Topological Signal Analysis

被引:0
作者
Emrani, Saba [1 ]
Krim, Hamid [1 ]
机构
[1] North Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA
来源
2014 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP) | 2014年
关键词
Gene expression; microarrays; topological signal analysis; periodicity detection; biomedical signal processing; IDENTIFICATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a new approach for analyzing gene expression data that builds on topological characteristics of time series. Our goal is to identify cell cycle regulated genes in micro array dataset. We construct a point cloud out of time series using delay coordinate embeddings. Persistent homology is utilized to analyse the topology of the point cloud for detection of periodicity. This novel technique is accurate and robust to noise, missing data points and varying sampling intervals. Our experiments using Yeast Saccharomyces cerevisiae dataset substantiate the capabilities of the proposed method.
引用
收藏
页码:1406 / 1409
页数:4
相关论文
共 50 条
  • [31] Deep learning techniques for cancer classification using microarray gene expression data
    Gupta, Surbhi
    Gupta, Manoj K.
    Shabaz, Mohammad
    Sharma, Ashutosh
    FRONTIERS IN PHYSIOLOGY, 2022, 13
  • [32] Bayesian factor models for the detection of coherent patterns in gene expression data
    Mayrink, Vinicius D.
    Lucas, Joseph E.
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2015, 29 (01) : 1 - 33
  • [33] Understanding the transcriptional regulation of cervix cancer using microarray gene expression data and promoter sequence analysis of a curated gene set
    Srivastava, Prashant
    Mangal, Manu
    Agarwal, Subhash Mohan
    GENE, 2014, 535 (02) : 233 - 238
  • [34] Feature Selection in Microarray Gene Expression Data Using Fisher Discriminant Ratio
    Sarbazi-Azad, Saeed
    Abadeh, Mohammad Saniee
    Abadi, Mehdi Irannejad Najaf
    2018 8TH INTERNATIONAL CONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE), 2018, : 225 - 230
  • [35] Clustering of Association Rules on Microarray Gene Expression Data
    Alagukumar, S.
    Vanitha, C. Devi Arockia
    Lawrance, R.
    ADVANCED COMPUTING AND INTELLIGENT ENGINEERING, 2020, 1082 : 85 - 97
  • [36] Dimension reduction for classification with gene expression microarray data
    Dai, Jian J.
    Lieu, Linh
    Rocke, David
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2006, 5
  • [37] Comprehensive gene expression meta-analysis of head and neck squamous cell carcinoma microarray data defines a robust survival predictor
    De Cecco, L.
    Bossi, P.
    Locati, L.
    Canevari, S.
    Licitra, L.
    ANNALS OF ONCOLOGY, 2014, 25 (08) : 1628 - 1635
  • [38] Robust Detection and Genotyping of Single Feature Polymorphisms from Gene Expression Data
    Wang, Minghui
    Hu, Xiaohua
    Li, Gang
    Leach, Lindsey J.
    Potokina, Elena
    Druka, Arnis
    Waugh, Robbie
    Kearsey, Michael J.
    Luo, Zewei
    PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (03)
  • [39] Bayesian models for gene expression with DNA microarray data
    Ibrahim, JG
    Chen, MH
    Gray, RJ
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (457) : 88 - 99
  • [40] GEPRO: Gene Expression Profiler for DNA microarray data
    Kim, Beob G.
    Lindemann, Merlin D.
    Bridges, Phillip J.
    Ko, CheMyong
    REVISTA COLOMBIANA DE CIENCIAS PECUARIAS, 2009, 22 (01) : 12 - 18