Robust Detection of Periodic Patterns in Gene Expression Microarray Data using Topological Signal Analysis

被引:0
|
作者
Emrani, Saba [1 ]
Krim, Hamid [1 ]
机构
[1] North Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA
来源
2014 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP) | 2014年
关键词
Gene expression; microarrays; topological signal analysis; periodicity detection; biomedical signal processing; IDENTIFICATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a new approach for analyzing gene expression data that builds on topological characteristics of time series. Our goal is to identify cell cycle regulated genes in micro array dataset. We construct a point cloud out of time series using delay coordinate embeddings. Persistent homology is utilized to analyse the topology of the point cloud for detection of periodicity. This novel technique is accurate and robust to noise, missing data points and varying sampling intervals. Our experiments using Yeast Saccharomyces cerevisiae dataset substantiate the capabilities of the proposed method.
引用
收藏
页码:1406 / 1409
页数:4
相关论文
共 50 条
  • [21] Microarray analysis of gene expression in lupus
    Mary K Crow
    Jay Wohlgemuth
    Arthritis Res Ther, 5
  • [22] Microarray analysis of gene expression in lupus
    Crow, MK
    Wohlgemuth, J
    ARTHRITIS RESEARCH & THERAPY, 2003, 5 (06) : 279 - 287
  • [23] A Topological Data Analysis Approach on Predicting Phenotypes from Gene Expression Data
    Mandal, Sayan
    Guzman-Saenz, Aldo
    Haiminen, Niina
    Basu, Saugata
    Parida, Laxmi
    ALGORITHMS FOR COMPUTATIONAL BIOLOGY (ALCOB 2020), 2020, 12099 : 178 - 187
  • [24] Bayesian detection of non-sinusoidal periodic patterns in circadian expression data
    Chudova, Darya
    Ihler, Alexander
    Lin, Kevin K.
    Andersen, Bogi
    Smyth, Padhraic
    BIOINFORMATICS, 2009, 25 (23) : 3114 - 3120
  • [25] Gene Expression Patterns in Different Wool Densities of Rex Rabbit Using cDNA Microarray
    Chen Sai-juan
    Liu Tao
    Liu Ya-juan
    Dong Bing
    Gu Zi-lin
    AGRICULTURAL SCIENCES IN CHINA, 2011, 10 (04): : 595 - 601
  • [26] Analysis of DNA microarray expression data
    Simon, Richard
    BEST PRACTICE & RESEARCH CLINICAL HAEMATOLOGY, 2009, 22 (02) : 271 - 282
  • [27] Gene expression analysis of the acute phase response using a canine microarray
    Higgins, MA
    Berridge, BR
    Mills, BJ
    Schultze, AE
    Gao, H
    Searfoss, GH
    Baker, TK
    Ryan, TP
    TOXICOLOGICAL SCIENCES, 2003, 74 (02) : 470 - 484
  • [28] Differential gene expression of hepatocellular carcinoma using cDNA microarray analysis
    Lau, WY
    Lai, PBS
    Leung, MF
    Leung, BCS
    Wong, N
    Chen, G
    Leung, TWT
    Liew, CT
    ONCOLOGY RESEARCH, 2000, 12 (02) : 59 - 69
  • [29] Clustering analysis of microarray gene expression data with new clustering ensemble method
    Luo, Fei
    Liu, Juan
    PROGRESS IN INTELLIGENCE COMPUTATION AND APPLICATIONS, PROCEEDINGS, 2007, : 500 - 504
  • [30] Gene expression in human alcoholism: Microarray analysis of frontal cortex
    Lewohl, JM
    Wang, L
    Miles, MF
    Zhang, L
    Dodd, PR
    Harris, RA
    ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2000, 24 (12) : 1873 - 1882