Robust Detection of Periodic Patterns in Gene Expression Microarray Data using Topological Signal Analysis

被引:0
|
作者
Emrani, Saba [1 ]
Krim, Hamid [1 ]
机构
[1] North Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA
来源
2014 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP) | 2014年
关键词
Gene expression; microarrays; topological signal analysis; periodicity detection; biomedical signal processing; IDENTIFICATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a new approach for analyzing gene expression data that builds on topological characteristics of time series. Our goal is to identify cell cycle regulated genes in micro array dataset. We construct a point cloud out of time series using delay coordinate embeddings. Persistent homology is utilized to analyse the topology of the point cloud for detection of periodicity. This novel technique is accurate and robust to noise, missing data points and varying sampling intervals. Our experiments using Yeast Saccharomyces cerevisiae dataset substantiate the capabilities of the proposed method.
引用
收藏
页码:1406 / 1409
页数:4
相关论文
共 50 条
  • [1] Analysis of microarray gene expression data
    Pham, Tuan D.
    Wells, Christine
    Crane, Denis I.
    CURRENT BIOINFORMATICS, 2006, 1 (01) : 37 - 53
  • [2] Assessing the Evolution of Gene Expression Using Microarray Data
    Woody, Owen Z.
    Doxey, Andrew C.
    McConkey, Brendan J.
    EVOLUTIONARY BIOINFORMATICS, 2008, 4 : 139 - 152
  • [3] Variance stabilization and robust normalization for microarray gene expression data
    von Heydebreck, A
    Huber, W
    Poustka, A
    Vingron, M
    COMPSTAT 2002: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2002, : 623 - 628
  • [4] Reliable Detection of Short Periodic Gene Expression Time Series Profiles in DNA Microarray Data
    Liew, Alan Wee-Chung
    Yan, Hong
    2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, : 4274 - +
  • [5] Efficient Gene Expression Data Analysis using ES-DBN For Microarray Cancer Data Classification
    Sucharita S.
    Sahu B.
    Swarnkar T.
    EAI Endorsed Transactions on Pervasive Health and Technology, 2024, 10
  • [6] Microarray Gene Expression Analysis using R
    Petre, I.
    Buiu, C.
    INTERNATIONAL CONFERENCE ON ADVANCEMENTS OF MEDICINE AND HEALTH CARE THROUGH TECHNOLOGY, MEDITECH 2016, 2017, 59 : 358 - 361
  • [7] Gene expression (microarray) data analysis by chemometric methods
    Zhu, David X.
    Goeke, Richard J.
    Baker, David L.
    Hamburg, James H.
    Booth, David E.
    Booth, Stephane E.
    CURRENT ANALYTICAL CHEMISTRY, 2007, 3 (03) : 233 - 237
  • [8] Analysis of Microarray Gene Expression Data Using Various Feature Selection and Classification Techniques
    Singh, W. Jai
    Kavitha, R. K.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (11): : 105 - 108
  • [9] Qualitative assessment of cDNA microarray gene expression data using detrended fluctuation analysis
    Nagarajan, Radhakrishnan
    Upreti, Meenakshi
    Govindan, R. B.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 373 : 503 - 510
  • [10] Signal deconvolution based expression-detection and background adjustment for microarray data
    Havilio, M
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2006, 13 (01) : 63 - 80