Magnesium Borate Fiber Coating Separators with High Lithium-Ion Transference Number for Lithium-Ion Batteries

被引:17
作者
Wang, Xin [1 ]
Peng, Longqing [1 ]
Hua, Haiming [1 ]
Liu, Yizheng [2 ]
Zhang, Peng [2 ]
Zhao, Jinbao [1 ,2 ]
机构
[1] Xiamen Univ, Collaborat Innovat Ctr Chem Energy Mat, Coll Chem & Chem Engn,State Key Lab Phys Chem Sol, Engn Res Ctr Electrochem Technol,Minist Educ,Stat, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Coll Energy, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium ion battery; Mg2B2O5; fibers; Lithium ion transference number; SOLID POLYMER ELECTROLYTES; ATOMIC LAYER DEPOSITION; ELECTROCHEMICAL PROPERTIES; POLYETHYLENE SEPARATORS; CONDUCTIVITY; GROWTH; ESTER; BORON;
D O I
10.1002/celc.201901916
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this work, magnesium borate fiber (MBO) is used as a functional ceramic to coat onto a polypropylene (PP) separator (MBO@PP). This MBO coating layer increases the lithium-ion transference number (t(Li+)) from 0.24 to 0.57 in the LiPF6-based electrolyte due to the MBO acting as Lewis acid sites interacts with Lewis base PF6- . The increase in the t(Li+) reduces the concentration polarization and promotes the migration of lithium ions. Besides, the prepared MBO@PP separator has better wettability with liquid electrolyte, the electrolyte uptake as well as thermal stability. The LiFePO4 half-coin with MBO@PP separator not only had better cycle stability, but also had a higher capacity retention rate at high current.
引用
收藏
页码:1187 / 1192
页数:6
相关论文
共 50 条
  • [31] Radiation graft of acrylamide onto polyethylene separators for lithium-ion batteries
    Xiao-Li Miao
    Ji-Hao Li
    Qun Xiang
    Jia-Qiang Xu
    Lin-Fan Li
    Jing-Ye Li
    Nuclear Science and Techniques, 2017, 28 (06) : 34 - 40
  • [32] Thermotolerant separators for safe lithium-ion batteries under extreme conditions
    Li, Yaqian
    Yu, Le
    Hu, Weiren
    Hu, Xianluo
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (39) : 20294 - 20317
  • [33] Radiation graft of acrylamide onto polyethylene separators for lithium-ion batteries
    Xiao-Li Miao
    Ji-Hao Li
    Qun Xiang
    Jia-Qiang Xu
    Lin-Fan Li
    Jing-Ye Li
    Nuclear Science and Techniques, 2017, 28
  • [34] Separators for Lithium-Ion Batteries: A Review on the Production Processes and Recent Developments
    Deimede, Valadoula
    Elmasides, Costas
    ENERGY TECHNOLOGY, 2015, 3 (05) : 453 - 468
  • [35] Recent progress in electrospun nanofiber separators for advanced lithium-ion batteries
    Ding, Wenfei
    Ru, Chenglei
    Xu, Lan
    JOURNAL OF ENERGY STORAGE, 2024, 102
  • [36] Comparative study of different membranes as separators for rechargeable lithium-ion batteries
    Guan, Hong-yan
    Lian, Fang
    Ren, Yan
    Wen, Yan
    Pan, Xiao-rong
    Sun, Jia-lin
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2013, 20 (06) : 598 - 603
  • [37] Electrode-supported thin α-alumina separators for lithium-ion batteries
    Mi, Wanliang
    Sharma, Gaurav
    Dong, Xueliang
    Jin, Yi
    Lin, Y. S.
    JOURNAL OF POWER SOURCES, 2016, 305 : 209 - 216
  • [38] Pyrogallic acid coated polypropylene membranes as separators for lithium-ion batteries
    Wang, Haibin
    Pan, Lei
    Wu, Chaolumen
    Gao, Dacheng
    Chen, Shengyang
    Li, Lei
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (41) : 20535 - 20540
  • [39] Rational design on separators and liquid electrolytes for safer lithium-ion batteries
    Mengqi Yuan
    Kai Liu
    Journal of Energy Chemistry , 2020, (04) : 58 - 70
  • [40] Advancements and challenges in polymer-based separators for lithium-ion batteries
    Trinh, Hoang Nghia
    Eesaee, Mostafa
    Shahgaldi, Samaneh
    Singh, Jaspal
    Hoang, Thi Linh Giang
    Nguyen-Tri, Phuong
    ENERGY STORAGE MATERIALS, 2025, 77