A new sparse representation framework for compressed sensing MRI

被引:27
作者
Chen, Zhen [1 ]
Huang, Chuanping [2 ]
Lin, Shufu [3 ]
机构
[1] South China Univ Technol, Sch Elect & Informat Engn, Guangzhou, Peoples R China
[2] Southern Med Univ, Affiliated Nanfang Hosp, Guangzhou, Peoples R China
[3] Xiamen Univ, Sch Software, Xiamen, Peoples R China
关键词
Compressed sensing (CS); Double tight frame (DTF); Magnetic resonance imaging (MRI); Robust L-1; L-a-norm; Sparse representation (SR); IMAGE-RECONSTRUCTION; EFFICIENT ALGORITHM; REGULARIZATION; MINIMIZATION;
D O I
10.1016/j.knosys.2019.104969
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Compressed sensing based Magnetic Resonance imaging (MRI) via sparse representation (or transform) has recently attracted broad interest. The tight frame (TF)-based sparse representation is a promising approach in compressed sensing MRI. However, the conventional TF-based sparse representation is difficult to utilize the sparsity of the whole image. Since the whole image usually has different structure textures and a kind of tight frame can only represent a particular kind of ground object, how to reconstruct high-quality of magnetic resonance (MR) image is a challenge. In this work, we propose a new sparse representation framework, which fuses the double tight frame (DTF) into the mixed norm regularization for MR image reconstruction from undersampled k-space data. In this framework, MR image is decomposed into smooth and nonsmooth regions. For the smooth regions, the wavelet TF-based weighted L-1-norm regularization is developed to reconstruct piecewise-smooth information of image. For nonsmooth regions, we introduce the curvelet TF-based robust L-1,L-a-norm regularization with the parameter to preserve the edge structural details and texture. To estimate the reasonable parameter, an adaptive parameter selection scheme is designed in robust L-1,L-a-norm regularization. Experimental results demonstrate that the proposed method can achieve the best image reconstruction results when compared with other existing methods in terms of quantitative metrics and visual effect. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 43 条
[1]  
[Anonymous], [No title captured]
[2]   Convergence analysis for iterative data-driven tight frame construction scheme [J].
Bao, Chenglong ;
Ji, Hui ;
Shen, Zuowei .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2015, 38 (03) :510-523
[3]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[4]   Wavelet domain image restoration with adaptive edge-preserving regularization [J].
Belge, M ;
Kilmer, ME ;
Miller, EL .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (04) :597-608
[5]  
Bengio S., 2009, Advances in Neural Information Processing Systems, V22, P82
[6]   Data-driven tight frame construction and image denoising [J].
Cai, Jian-Feng ;
Ji, Hui ;
Shen, Zuowei ;
Ye, Gui-Bo .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2014, 37 (01) :89-105
[7]   Fast discrete curvelet transforms [J].
Candes, Emmanuel ;
Demanet, Laurent ;
Donoho, David ;
Ying, Lexing .
MULTISCALE MODELING & SIMULATION, 2006, 5 (03) :861-899
[8]   Enhancing Sparsity by Reweighted l1 Minimization [J].
Candes, Emmanuel J. ;
Wakin, Michael B. ;
Boyd, Stephen P. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (5-6) :877-905
[9]   Adaptive wavelet thresholding for image denoising and compression [J].
Chang, SG ;
Yu, B ;
Vetterli, M .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (09) :1532-1546
[10]   A Majorize-Minimize Subspace Approach for l2-l0 Image Regularization [J].
Chouzenoux, Emilie ;
Jezierska, Anna ;
Pesquet, Jean-Christophe ;
Talbot, Hugues .
SIAM JOURNAL ON IMAGING SCIENCES, 2013, 6 (01) :563-591