Multivariate statistical monitoring of batch processes: an industrial case study of fermentation supervision

被引:56
作者
Albert, S [1 ]
Kinley, RD [1 ]
机构
[1] Eli Lilly & Co Ltd, Speke Operat, Liverpool L24 9LN, Merseyside, England
关键词
D O I
10.1016/S0167-7799(00)01528-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
This article describes the development of Multivariate Statistical Process Control (MSPC) procedures for monitoring batch processes and demonstrates its application with respect to industrial tylosin biosynthesis. Currently, the main fermentation phase is monitored using univariate statistical process control principles implemented within the G2 real-time expert system package. This development addresses integrating various process stages into a monitoring system and observing interactions among individual variables through the use of multivariate projection methods. The benefits of this approach will be discussed from an industrial perspective.
引用
收藏
页码:53 / 62
页数:10
相关论文
共 16 条
  • [1] Variable selection in wavelet regression models
    Alsberg, BK
    Woodward, AM
    Winson, MK
    Rowland, JJ
    Kell, DB
    [J]. ANALYTICA CHIMICA ACTA, 1998, 368 (1-2) : 29 - 44
  • [2] [Anonymous], MONITORING CONTROL F
  • [3] DUKE P, 1992, KAT KNOWLEDGE ACQUIS
  • [4] NEURAL NETWORKS AND THE BIAS VARIANCE DILEMMA
    GEMAN, S
    BIENENSTOCK, E
    DOURSAT, R
    [J]. NEURAL COMPUTATION, 1992, 4 (01) : 1 - 58
  • [5] Issues in the development of an industrial bioprocess advisory system
    Glassey, J
    Montague, G
    Mohan, P
    [J]. TRENDS IN BIOTECHNOLOGY, 2000, 18 (04) : 136 - 141
  • [6] HAHN GJ, 1991, STAT INTERVAL GUIDE
  • [7] Ignova M, 1999, BIOTECHNOL BIOENG, V64, P82
  • [8] Joliffe I.T., 1986, Principal Component Analysis
  • [9] MACGREGOR JF, 1994, IFAC WORLD C KYOT JA
  • [10] Non-parametric confidence bounds for process performance monitoring charts
    Martin, EB
    Morris, AJ
    [J]. JOURNAL OF PROCESS CONTROL, 1996, 6 (06) : 349 - 358