On the behavior of weak convergence under nonlinearities and applications

被引:16
作者
Moreira, DR [1 ]
Teixeira, EV [1 ]
机构
[1] Univ Texas, Dept Math, Austin, TX 78712 USA
关键词
D O I
10.1090/S0002-9939-04-07876-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper provides a sufficient condition to guarantee the stability of weak limits under nonlinear operators acting on vector-valued Lebesgue spaces. This nonlinear framework places the weak convergence in perspective. Such an approach allows short and insightful proofs of important results in Functional Analysis such as: weak convergence in L-infinity implies strong convergence in L-p for all 1 <= p < infinity, weak convergence in L-1 vs. strong convergence in L-1 and the Brezis-Lieb theorem. The final goal is to use this framework as a strategy to grapple with a nonlinear weak spectral problem on W-1,W-p.
引用
收藏
页码:1647 / 1656
页数:10
相关论文
共 9 条
  • [1] Adams A, 2003, SOBOLEV SPACES
  • [2] A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS
    BREZIS, H
    LIEB, E
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) : 486 - 490
  • [3] Brezis H., 1983, THEORIE APPL COLLECT
  • [4] Diestel J., 1977, MATH SURVEYS, V15
  • [5] DUNFORD N, 1964, LINEAR OPERATOR
  • [6] LUCCHETTI R, 1980, INDIANA U MATH J, V29
  • [7] ROSENTHAL HP, 1974, P NAT ACAD SCI US, V71
  • [8] TALAGRAND M, 1984, AM J MATH, V106
  • [9] ZOLEZZI T, 1974, INDIANA U MATH J, V23