Reliable Crops Classification Using Limited Number of Sentinel-2 and Sentinel-1 Images

被引:9
|
作者
Hejmanowska, Beata [1 ]
Kramarczyk, Piotr [1 ]
Glowienka, Ewa [1 ]
Mikrut, Slawomir [1 ]
机构
[1] AGH Univ Sci & Technol, Fac Min Surveying & Environm Engn, Dept Photogrammetry Remote Sensing Environm & Spa, Al Mickiewicza 30, PL-30059 Krakow, Poland
关键词
reliability of the classification; machine learning classifiers; random forest; Sentinel-2; Sentinel-1; TIME-SERIES; LAND-COVER; ACCURACY; AREA;
D O I
10.3390/rs13163176
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The study presents the analysis of the possible use of limited number of the Sentinel-2 and Sentinel-1 to check if crop declarations that the EU farmers submit to receive subsidies are true. The declarations used in the research were randomly divided into two independent sets (training and test). Based on the training set, supervised classification of both single images and their combinations was performed using random forest algorithm in SNAP (ESA) and our own Python scripts. A comparative accuracy analysis was performed on the basis of two forms of confusion matrix (full confusion matrix commonly used in remote sensing and binary confusion matrix used in machine learning) and various accuracy metrics (overall accuracy, accuracy, specificity, sensitivity, etc.). The highest overall accuracy (81%) was obtained in the simultaneous classification of multitemporal images (three Sentinel-2 and one Sentinel-1). An unexpectedly high accuracy (79%) was achieved in the classification of one Sentinel-2 image at the end of May 2018. Noteworthy is the fact that the accuracy of the random forest method trained on the entire training set is equal 80% while using the sampling method ca. 50%. Based on the analysis of various accuracy metrics, it can be concluded that the metrics used in machine learning, for example: specificity and accuracy, are always higher then the overall accuracy. These metrics should be used with caution, because unlike the overall accuracy, to calculate these metrics, not only true positives but also false positives are used as positive results, giving the impression of higher accuracy. Correct calculation of overall accuracy values is essential for comparative analyzes. Reporting the mean accuracy value for the classes as overall accuracy gives a false impression of high accuracy. In our case, the difference was 10-16% for the validation data, and 25-45% for the test data.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] GLCM FEATURES FOR LEARNING FLOODED VEGETATION FROM SENTINEL-1 AND SENTINEL-2 DATA
    Tavus, Beste
    Kocaman, Sultan
    39TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT ISRSE-39 FROM HUMAN NEEDS TO SDGS, VOL. 48-M-1, 2023, : 601 - 607
  • [42] Monthly composites from Sentinel-1 and Sentinel-2 images for regional major crop mapping with Google Earth Engine
    Chong, Luo
    Huan-jun, Liu
    Lu-ping, Lu
    Zheng-rong, Liu
    Fan-chang, Kong
    Xin-le, Zhang
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2021, 20 (07) : 1944 - 1957
  • [43] A synergic method of Sentinel-1 and Sentinel-2 images for retrieving soil moisture content in agricultural regions
    Liang, Jiatan
    Liang, Guojian
    Zhao, Yanchun
    Zhang, Yechun
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 190
  • [44] SENTINEL-1 & SENTINEL-2 FOR SOIL MOISTURE RETRIEVAL AT FIELD SCALE
    Mattia, F.
    Balenzano, A.
    Satalino, G.
    Lovergine, F.
    Peng, J.
    Wegmuller, U.
    Cartus, O.
    Davidson, M. W. J.
    Kim, S.
    Johnson, J.
    Walker, J.
    Wu, X.
    Pauwels, V. R. N.
    McNairn, H.
    Caldwell, T.
    Cosh, M.
    Jackson, T.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6143 - 6146
  • [45] Superpixel-Based Regional-Scale Grassland Community Classification Using Genetic Programming with Sentinel-1 SAR and Sentinel-2 Multispectral Images
    Wu, Zhenjiang
    Zhang, Jiahua
    Deng, Fan
    Zhang, Sha
    Zhang, Da
    Xun, Lan
    Ji, Mengfei
    Feng, Qian
    REMOTE SENSING, 2021, 13 (20)
  • [46] SHIP CLASSIFICATION USING LAYOVER IN SENTINEL-1 IMAGES
    Al Hinai, Al Adil
    Guida, Raffaella
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7495 - 7498
  • [47] Combined Sentinel-1 and Sentinel-2 Imagery for Destroyed Building Classification in Gaza Strip With Random Forest
    Li, Xinchen
    Guo, Liang
    Chan, Jonathan Cheung-Wai
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 3827 - 3839
  • [48] Using Sentinel-1 and Sentinel-2 Time Series for Slangbos Mapping in the Free State Province, South Africa
    Urban, Marcel
    Schellenberg, Konstantin
    Morgenthal, Theunis
    Dubois, Clemence
    Hirner, Andreas
    Gessner, Ursula
    Mogonong, Buster
    Zhang, Zhenyu
    Baade, Jussi
    Collett, Anneliza
    Schmullius, Christiane
    REMOTE SENSING, 2021, 13 (17)
  • [49] Crop Detection Using Time Series of Sentinel-2 and Sentinel-1 and Existing Land Parcel Information Systems
    Snevajs, Herman
    Charvat, Karel
    Onckelet, Vincent
    Kvapil, Jiri
    Zadrazil, Frantisek
    Kubickova, Hana
    Seidlova, Jana
    Batrlova, Iva
    REMOTE SENSING, 2022, 14 (05)
  • [50] Irrigation Detection Using Sentinel-1 and Sentinel-2 Time Series on Fruit Tree Orchards
    Chakhar, Amal
    Hernandez-Lopez, David
    Ballesteros, Rocio
    Moreno, Miguel A.
    REMOTE SENSING, 2024, 16 (03)