Reliable Crops Classification Using Limited Number of Sentinel-2 and Sentinel-1 Images

被引:9
|
作者
Hejmanowska, Beata [1 ]
Kramarczyk, Piotr [1 ]
Glowienka, Ewa [1 ]
Mikrut, Slawomir [1 ]
机构
[1] AGH Univ Sci & Technol, Fac Min Surveying & Environm Engn, Dept Photogrammetry Remote Sensing Environm & Spa, Al Mickiewicza 30, PL-30059 Krakow, Poland
关键词
reliability of the classification; machine learning classifiers; random forest; Sentinel-2; Sentinel-1; TIME-SERIES; LAND-COVER; ACCURACY; AREA;
D O I
10.3390/rs13163176
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The study presents the analysis of the possible use of limited number of the Sentinel-2 and Sentinel-1 to check if crop declarations that the EU farmers submit to receive subsidies are true. The declarations used in the research were randomly divided into two independent sets (training and test). Based on the training set, supervised classification of both single images and their combinations was performed using random forest algorithm in SNAP (ESA) and our own Python scripts. A comparative accuracy analysis was performed on the basis of two forms of confusion matrix (full confusion matrix commonly used in remote sensing and binary confusion matrix used in machine learning) and various accuracy metrics (overall accuracy, accuracy, specificity, sensitivity, etc.). The highest overall accuracy (81%) was obtained in the simultaneous classification of multitemporal images (three Sentinel-2 and one Sentinel-1). An unexpectedly high accuracy (79%) was achieved in the classification of one Sentinel-2 image at the end of May 2018. Noteworthy is the fact that the accuracy of the random forest method trained on the entire training set is equal 80% while using the sampling method ca. 50%. Based on the analysis of various accuracy metrics, it can be concluded that the metrics used in machine learning, for example: specificity and accuracy, are always higher then the overall accuracy. These metrics should be used with caution, because unlike the overall accuracy, to calculate these metrics, not only true positives but also false positives are used as positive results, giving the impression of higher accuracy. Correct calculation of overall accuracy values is essential for comparative analyzes. Reporting the mean accuracy value for the classes as overall accuracy gives a false impression of high accuracy. In our case, the difference was 10-16% for the validation data, and 25-45% for the test data.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Synergy of Sentinel-1 and Sentinel-2 Imagery for Crop Classification Based on DC-CNN
    Zhang, Kaixin
    Yuan, Da
    Yang, Huijin
    Zhao, Jianhui
    Li, Ning
    REMOTE SENSING, 2023, 15 (11)
  • [32] OPERATIVE MAPPING OF IRRIGATED AREAS USING SENTINEL-1 AND SENTINEL-2 TIME SERIES
    Bazzi, Hassan
    Baghdadi, Nicolas
    Zribi, Mehrez
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5796 - 5799
  • [33] Land Cover Classification of Nine Perennial Crops Using Sentinel-1 and-2 Data
    Brinkhoff, James
    Vardanega, Justin
    Robson, Andrew J.
    REMOTE SENSING, 2020, 12 (01)
  • [34] Seasonal evaluation and mapping of aboveground biomass in natural rangelands using Sentinel-1 and Sentinel-2 data
    Rapiya, Monde
    Ramoelo, Abel
    Truter, Wayne
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2023, 195 (12)
  • [35] PADDY FIELD MAPPING IN EASTERN PART OF ASIA USING SENTINEL-1 AND SENTINEL-2
    Inoue, Shimpei
    Ito, Akihiko
    Yonezawa, Chinatsu
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 5171 - 5174
  • [36] Use of time series Sentinel-1 and Sentinel-2 image for rice crop inventory in parts of Bangladesh
    Aziz, Md. Abdullah
    Haldar, Dipanwita
    Danodia, Abhishek
    Chauhan, Prakash
    APPLIED GEOMATICS, 2023, 15 (02) : 407 - 420
  • [37] SENTINEL-1 & SENTINEL-2 DATA FOR SOIL TILLAGE CHANGE DETECTION
    Satalino, G.
    Mattia, F.
    Balenzano, A.
    Lovergine, F. P.
    Rinaldi, M.
    De Santis, A. P.
    Ruggieri, S.
    Nafria Garcia, D. A.
    Paredes Gomez, V.
    Ceschia, E.
    Planells, M.
    Le Toan, T.
    Ruiz, A.
    Moreno, J. F.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6627 - 6630
  • [38] Swin Transformer for Complex Coastal Wetland Classification Using the Integration of Sentinel-1 and Sentinel-2 Imagery
    Jamali, Ali
    Mahdianpari, Masoud
    WATER, 2022, 14 (02)
  • [39] SENTINEL-1 AND SENTINEL-2 DATA FUSION FOR URBAN CHANGE DETECTION
    Benedetti, Alessia
    Picchiani, Matteo
    Del Frate, Fabio
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 1962 - 1965
  • [40] Random Forest Classification using Sentinel-1 and Sentinel-2 series for vegetation monitoring in the Pays de Brest (France)
    Niculescu, Simona
    Billey, Antoine
    Talab-Ouali, Halima
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XX, 2018, 10783