Reliable Crops Classification Using Limited Number of Sentinel-2 and Sentinel-1 Images

被引:9
|
作者
Hejmanowska, Beata [1 ]
Kramarczyk, Piotr [1 ]
Glowienka, Ewa [1 ]
Mikrut, Slawomir [1 ]
机构
[1] AGH Univ Sci & Technol, Fac Min Surveying & Environm Engn, Dept Photogrammetry Remote Sensing Environm & Spa, Al Mickiewicza 30, PL-30059 Krakow, Poland
关键词
reliability of the classification; machine learning classifiers; random forest; Sentinel-2; Sentinel-1; TIME-SERIES; LAND-COVER; ACCURACY; AREA;
D O I
10.3390/rs13163176
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The study presents the analysis of the possible use of limited number of the Sentinel-2 and Sentinel-1 to check if crop declarations that the EU farmers submit to receive subsidies are true. The declarations used in the research were randomly divided into two independent sets (training and test). Based on the training set, supervised classification of both single images and their combinations was performed using random forest algorithm in SNAP (ESA) and our own Python scripts. A comparative accuracy analysis was performed on the basis of two forms of confusion matrix (full confusion matrix commonly used in remote sensing and binary confusion matrix used in machine learning) and various accuracy metrics (overall accuracy, accuracy, specificity, sensitivity, etc.). The highest overall accuracy (81%) was obtained in the simultaneous classification of multitemporal images (three Sentinel-2 and one Sentinel-1). An unexpectedly high accuracy (79%) was achieved in the classification of one Sentinel-2 image at the end of May 2018. Noteworthy is the fact that the accuracy of the random forest method trained on the entire training set is equal 80% while using the sampling method ca. 50%. Based on the analysis of various accuracy metrics, it can be concluded that the metrics used in machine learning, for example: specificity and accuracy, are always higher then the overall accuracy. These metrics should be used with caution, because unlike the overall accuracy, to calculate these metrics, not only true positives but also false positives are used as positive results, giving the impression of higher accuracy. Correct calculation of overall accuracy values is essential for comparative analyzes. Reporting the mean accuracy value for the classes as overall accuracy gives a false impression of high accuracy. In our case, the difference was 10-16% for the validation data, and 25-45% for the test data.
引用
收藏
页数:23
相关论文
共 50 条
  • [11] DSNUNet: An Improved Forest Change Detection Network by Combining Sentinel-1 and Sentinel-2 Images
    Jiang, Jiawei
    Xing, Yuanjun
    Wei, Wei
    Yan, Enping
    Xiang, Jun
    Mo, Dengkui
    REMOTE SENSING, 2022, 14 (19)
  • [12] A Copernicus Sentinel-1 and Sentinel-2 Classification Framework for the 2020+ European Common Agricultural Policy: A Case Study in Valencia (Spain)
    Campos-Taberner, Manuel
    Javier Garcia-Haro, Francisco
    Martinez, Beatriz
    Sanchez-Ruiz, Sergio
    Amparo Gilabert, Maria
    AGRONOMY-BASEL, 2019, 9 (09):
  • [13] Cropland and Crop Type Classification with Sentinel-1 and Sentinel-2 Time Series Using Google Earth Engine for Agricultural Monitoring in Ethiopia
    Eisfelder, Christina
    Boemke, Bruno
    Gessner, Ursula
    Sogno, Patrick
    Alemu, Genanaw
    Hailu, Rahel
    Mesmer, Christian
    Huth, Juliane
    REMOTE SENSING, 2024, 16 (05)
  • [14] Improving Co-Registration for Sentinel-1 SAR and Sentinel-2 Optical Images
    Ye, Yuanxin
    Yang, Chao
    Zhu, Bai
    Zhou, Liang
    He, Youquan
    Jia, Huarong
    REMOTE SENSING, 2021, 13 (05) : 1 - 27
  • [15] Mountain crop monitoring with multitemporal Sentinel-1 and Sentinel-2 imagery
    Notarnicola, C.
    Asam, S.
    Jacob, A.
    Marin, C.
    Rossi, M.
    Stendardi, L.
    2017 9TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTITEMP), 2017,
  • [16] MAPPING PLANT COMMUNITIES IN THE INTERTIDAL ZONES USING SENTINEL-2 AND SENTINEL-1 DATA
    Wang, Tiejun
    Luo, Yansha
    Sun, Yiwen
    Liu, Xinhui
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8381 - 8384
  • [17] A combination of Sentinel-1 RADAR and Sentinel-2 multispectral data improves classification of morphologically similar savanna woody plants
    Fundisi, Emmanuel
    Tesfamichael, Solomon G.
    Ahmed, Fethi
    EUROPEAN JOURNAL OF REMOTE SENSING, 2022, 55 (01) : 372 - 387
  • [18] Combination of Sentinel-1 and Sentinel-2 Data for Tree Species Classification in a Central European Biosphere Reserve
    Lechner, Michael
    Dostalova, Alena
    Hollaus, Markus
    Atzberger, Clement
    Immitzer, Markus
    REMOTE SENSING, 2022, 14 (11)
  • [19] Improving the Accuracy of Multiple Algorithms for Crop Classification by Integrating Sentinel-1 Observations with Sentinel-2 Data
    Chakhar, Amal
    Hernandez-Lopez, David
    Ballesteros, Rocio
    Moreno, Miguel A.
    REMOTE SENSING, 2021, 13 (02) : 1 - 21
  • [20] DEEP RECURRENT NEURAL NETWORK FOR CROP CLASSIFICATION TASK BASED ON SENTINEL-1 AND SENTINEL-2 IMAGERY
    Kussul, Nataliia
    Lavreniuk, Mykola
    Shumilo, Leonid
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 6914 - 6917