Lp-solutions of the Navier-Stokes equation with fractional Brownian noise

被引:4
|
作者
Ferrario, Benedetta [1 ]
Olivera, Christian [2 ]
机构
[1] Univ Pavia, Dipartimento Matemat, Via Ferrata 5, I-27100 Pavia, Italy
[2] Univ Estadual Campinas, Dept Matemat, Rua Sergio Buarque de Holanda 651, BR-13083859 Campinas, SP, Brazil
来源
AIMS MATHEMATICS | 2018年 / 3卷 / 04期
基金
巴西圣保罗研究基金会;
关键词
stochastic partial differential equations; Navier-Stokes equations; mild solution; fractional Brownian motion; FLUID;
D O I
10.3934/Math.2018.4.539
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Navier-Stokes equations on a smooth bounded domain D subset of R-d (d = 2 or 3), under the effect of an additive fractional Brownian noise. We show local existence and uniqueness of a mild L(-)(p)solution for p > d.
引用
收藏
页码:539 / 553
页数:15
相关论文
共 50 条
  • [21] DYNAMICAL BEHAVIOR FOR THE SOLUTIONS OF THE NAVIER-STOKES EQUATION
    Li, Kuijie
    Ozawa, Tohru
    Wang, Baoxiang
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (04) : 1511 - 1560
  • [22] RENORMALIZED ESTIMATES FOR SOLUTIONS TO THE NAVIER-STOKES EQUATION
    Frehse, Jens
    Specovius-Neugebauer, Maria
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2009, 40 (01) : 11 - 32
  • [23] Nonuniqueness of weak solutions to the Navier-Stokes equation
    Buckmaster, Tristan
    Vicol, Vlad
    ANNALS OF MATHEMATICS, 2019, 189 (01) : 101 - 144
  • [24] A unique approach for solving the fractional Navier-Stokes equation
    Zayir, Muslim Yousif
    Jassim, Hassan Kamil
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (08) : 2611 - 2616
  • [25] Analytical solution of the time fractional Navier-Stokes equation
    Jaber, Khaled K.
    Ahmad, Rami S.
    AIN SHAMS ENGINEERING JOURNAL, 2018, 9 (04) : 1917 - 1927
  • [26] Formulas for Drag Coefficient and the Navier-Stokes Fractional Equation
    Roberto Mercado, Jose
    Guido, Pedro
    Sanchez-Sesma, Jorge
    Iniguez, Mauro
    TECNOLOGIA Y CIENCIAS DEL AGUA, 2014, 5 (02) : 149 - 160
  • [27] LP-solutions for fractional integral equations
    Arshad, Sadia
    Lupulescu, Vasile
    O'Regan, Donal
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (01) : 259 - 276
  • [28] LP-solutions for fractional integral equations
    Sadia Arshad
    Vasile Lupulescu
    Donal O’Regan
    Fractional Calculus and Applied Analysis, 2014, 17 : 259 - 276
  • [29] On the Navier-Stokes equation perturbed by rough transport noise
    Hofmanova, Martina
    Leahy, James-Michael
    Nilssen, Torstein
    JOURNAL OF EVOLUTION EQUATIONS, 2019, 19 (01) : 203 - 247
  • [30] THE INTERNAL STABILIZATION BY NOISE OF THE LINEARIZED NAVIER-STOKES EQUATION
    Barbu, Viorel
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2011, 17 (01) : 117 - 130