The Cauchy problem for a class of parabolic equations in weighted variable Sobolev spaces: Existence and asymptotic behavior

被引:13
|
作者
Alves, Claudianor O. [1 ]
Shmarev, Sergey [2 ]
Simsen, Jacson [3 ]
Simsen, Mariza S. [3 ]
机构
[1] Univ Fed Campina Grande, Unidade Acad Matemat, BR-58429900 Campina Grande, PB, Brazil
[2] Univ Oviedo, Dept Math, C Calvo Sotelo S-N, Oviedo 33007, Spain
[3] Univ Fed Itajuba, Inst Matemat & Comp, BR-37500903 Itajuba, MG, Brazil
关键词
p(x)-Laplacian Weighted variable exponent Sobolev spaces; Cauchy problem; Global attractor; ATTRACTORS;
D O I
10.1016/j.jmaa.2016.05.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper addresses the questions of existence and asymptotic behavior of solutions to the Cauchy problem for the equation u(t) - div =(D(x)vertical bar del u vertical bar(p(x)-2)del u) + A(x)vertical bar u vertical bar(q(x)-2)u = f(x, t, u). The coefficients D, A are nonnegative functions which may vanish on a set of zero measure in R-n, and A(x) -> infinity as vertical bar x vertical bar -> infinity, f (x,t,u) is globally Lipschitz with respect to u. The exponents p, q : R-n bar right arrow (1, infinity) are given measurable functions. We prove that the problem admits at least one weak solution in a weighted Sobolev space with variable exponents, provided that p(-) = ess inf(Rn) p(x) > max {2n/n+2, 1}, q(-) = ess inf(Rn) q(x) > 2, A(-) 2/q(x)-2 is an element of L-1(R-n) and D- s/p(x)-s is an element of L-1 (B-R1 (0)) with constants max {1, 2n/n+2} < s < min {p(-), q(-)} and R-1 > 0. In the case p(-) > 2, q(x) = p(x) a.e. in R-n, and f = f (u), there exists a unique strong solution and the problem has a global attractor in L-2(R-n). (c) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:265 / 294
页数:30
相关论文
共 50 条
  • [41] Trace theorem and non-zero boundary value problem for parabolic equations in weighted Sobolev spaces
    Kim, Doyoon
    Kim, Kyeong-Hun
    Woo, Kwan
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2024, 12 (01): : 134 - 172
  • [42] Trace theorem and non-zero boundary value problem for parabolic equations in weighted Sobolev spaces
    Doyoon Kim
    Kyeong-Hun Kim
    Kwan Woo
    Stochastics and Partial Differential Equations: Analysis and Computations, 2024, 12 : 134 - 172
  • [43] Existence of a Renormalized Solution of a Parabolic Problem in Anisotropic Sobolev–Orlicz Spaces
    Vorob’yov N.A.
    Mukminov F.K.
    Journal of Mathematical Sciences, 2021, 258 (1) : 37 - 64
  • [44] On a class of nonlinear degenerate elliptic equations in weighted Sobolev spaces
    El Ouaarabi, Mohamed
    Allalou, Chakir
    Melliani, Said
    GEORGIAN MATHEMATICAL JOURNAL, 2023, 30 (01) : 81 - 94
  • [45] SOLVABILITY OF CAUCHY PROBLEM FOR ABSTRACT PARABOLIC EQUATIONS WITH VARIABLE OPERATORS
    YAKUBOV, SY
    DOKLADY AKADEMII NAUK SSSR, 1967, 176 (03): : 545 - &
  • [46] CAUCHY PROBLEMS FOR FIFTH-ORDER KDV EQUATIONS IN WEIGHTED SOBOLEV SPACES
    Bustamante, Eddye
    Jimenez, Jose
    Mejia, Jorge
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [47] The Cauchy problem for nonlinear Klein-Gordon equations in the Sobolev spaces
    Nakamura, M
    Ozawa, T
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2001, 37 (03) : 255 - 293
  • [48] The Cauchy problem for space-time monopole equations in Sobolev spaces
    Huh, Hyungjin
    Yim, Jihyun
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (04)
  • [49] Existence results for degenerate quasilinear elliptic equations in weighted Sobolev spaces
    Cavalheiro, Albo Carlos
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2010, 17 (01) : 141 - 153
  • [50] The Cauchy problem for fractional Navier-Stokes equations in Sobolev spaces
    Peng, Li
    Zhou, Yong
    Ahmad, Bashir
    Alsaedi, Ahmed
    CHAOS SOLITONS & FRACTALS, 2017, 102 : 218 - 228