The Cauchy problem for a class of parabolic equations in weighted variable Sobolev spaces: Existence and asymptotic behavior

被引:13
|
作者
Alves, Claudianor O. [1 ]
Shmarev, Sergey [2 ]
Simsen, Jacson [3 ]
Simsen, Mariza S. [3 ]
机构
[1] Univ Fed Campina Grande, Unidade Acad Matemat, BR-58429900 Campina Grande, PB, Brazil
[2] Univ Oviedo, Dept Math, C Calvo Sotelo S-N, Oviedo 33007, Spain
[3] Univ Fed Itajuba, Inst Matemat & Comp, BR-37500903 Itajuba, MG, Brazil
关键词
p(x)-Laplacian Weighted variable exponent Sobolev spaces; Cauchy problem; Global attractor; ATTRACTORS;
D O I
10.1016/j.jmaa.2016.05.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper addresses the questions of existence and asymptotic behavior of solutions to the Cauchy problem for the equation u(t) - div =(D(x)vertical bar del u vertical bar(p(x)-2)del u) + A(x)vertical bar u vertical bar(q(x)-2)u = f(x, t, u). The coefficients D, A are nonnegative functions which may vanish on a set of zero measure in R-n, and A(x) -> infinity as vertical bar x vertical bar -> infinity, f (x,t,u) is globally Lipschitz with respect to u. The exponents p, q : R-n bar right arrow (1, infinity) are given measurable functions. We prove that the problem admits at least one weak solution in a weighted Sobolev space with variable exponents, provided that p(-) = ess inf(Rn) p(x) > max {2n/n+2, 1}, q(-) = ess inf(Rn) q(x) > 2, A(-) 2/q(x)-2 is an element of L-1(R-n) and D- s/p(x)-s is an element of L-1 (B-R1 (0)) with constants max {1, 2n/n+2} < s < min {p(-), q(-)} and R-1 > 0. In the case p(-) > 2, q(x) = p(x) a.e. in R-n, and f = f (u), there exists a unique strong solution and the problem has a global attractor in L-2(R-n). (c) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:265 / 294
页数:30
相关论文
共 50 条