Randomized Decoding of Gabidulin Codes Beyond the Unique Decoding Radius

被引:0
作者
Renner, Julian [1 ]
Jerkovits, Thomas [2 ]
Bartz, Hannes [2 ]
Puchinger, Sven [3 ]
Loidreau, Pierre [4 ]
Wachter-Zeh, Antonia [1 ]
机构
[1] Tech Univ Munich TUM, Munich, Germany
[2] German Aerosp Ctr DLR, Oberpfaffenhofen, Germany
[3] Tech Univ Denmark DTU, Lyngby, Denmark
[4] Univ Rennes, DGA MI, CNRS, IRMAR,UMR 6625, F-35000 Rennes, France
来源
POST-QUANTUM CRYPTOGRAPHY, PQCRYPTO 2020 | 2020年 / 12100卷
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
Gabidulin codes; Decoding; Rank metric; Code-based cryptography; REED-SOLOMON; MINIMUM DISTANCE; ERROR; INTRACTABILITY;
D O I
10.1007/978-3-030-44223-1_1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We address the problem of decoding Gabidulin codes beyond their unique error-correction radius. The complexity of this problem is of importance to assess the security of some rank-metric code-based cryptosystems. We propose an approach that introduces row or column erasures to decrease the rank of the error in order to use any proper polynomial-time Gabidulin code error-erasure decoding algorithm. The expected work factor of this new randomized decoding approach is a polynomial term times q(m(n-k)-w(n+m)+w2+ min{2 xi(n+k/2-xi),wk}), where n is the code length, q the size of the base field, m the extension degree of the field, k the code dimension, w the number of errors, and xi := w- n-k/2. It improves upon generic rank-metric decoders by an exponential factor.
引用
收藏
页码:3 / 19
页数:17
相关论文
共 50 条
  • [41] Statistical Decoding of Codes over Fq
    Niebuhr, Robert
    POST-QUANTUM CRYPTOGRAPHY, 2011, 7071 : 217 - 227
  • [42] Fast decoding algorithm for RS codes
    Ju, SM
    Bi, GG
    ELECTRONICS LETTERS, 1997, 33 (17) : 1452 - 1453
  • [43] TRELLIS STRUCTURES OF BLOCK CODES AND THEIR DECODING
    Ma Jianfeng Wang Yumin Lei Zhenjia(Dept. of Comput. Sci.
    Journal of Electronics(China), 1997, (03) : 241 - 246
  • [44] ON THE DECODING OF ALGEBRAIC-GEOMETRIC CODES
    XING, CP
    CHINESE SCIENCE BULLETIN, 1991, 36 (19): : 1598 - 1600
  • [45] Hardness of Decoding Quantum Stabilizer Codes
    Iyer, Pavithran
    Poulin, David
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (09) : 5209 - 5223
  • [46] On Tanner Codes: Minimum Distance and Decoding
    H. Janwa
    A. K. Lal
    Applicable Algebra in Engineering, Communication and Computing, 2003, 13 : 335 - 347
  • [47] Performance of Sphere Decoding of Block Codes
    El-Khamy, Mostafa
    Vikalo, Haris
    Hassibi, Babak
    McEliece, Robert J.
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2009, 57 (10) : 2940 - 2950
  • [48] Partial Permutation Decoding for Abelian Codes
    Joaquin Bernal, Jose
    Jacobo Simon, Juan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (08) : 5152 - 5170
  • [49] Soft List Decoding of Polar Codes
    Xiang, Luping
    Liu, Yusha
    Egilmez, Zeynep B. Kaykac
    G. Maunder, Robert
    Yang, Lie-Liang
    Hanzo, Lajos
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (11) : 13921 - 13926
  • [50] List decoding of number field codes
    Coxon, Nicholas
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 72 (03) : 687 - 711