The Dirichlet problem for the total variation flow

被引:157
作者
Andreu, F [1 ]
Ballester, C
Caselles, V
Mazón, JM
机构
[1] Univ Valencia, Dept Anal Matemat, E-46100 Valencia, Spain
[2] Univ Pompeu Fabra, Dept Tecnol, Barcelona 08002, Spain
关键词
D O I
10.1006/jfan.2000.3698
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new concept of solution for the Dirichlet problem for the total variational flow named entropy solution. Using Kruzhkov's method of doubling variables both in space and in time we prove uniqueness and a comparison principle in L-1 for entropy solutions. To prove the existence we use th nonlinear semigroup theory adn we show that when the initial and boundary data are nonnegative the semigroup solutions are strong solutions. (C) 2001 Academic Press.
引用
收藏
页码:347 / 403
页数:57
相关论文
共 28 条
  • [1] Ambrosio L., 2000, OXFORD MATH MONOGRAP
  • [2] ANDREAU F, IN PRESS DIFFERENTIA
  • [3] Existence and uniqueness for a degenerate parabolic equation with L1-data
    Andreu, F
    Mazón, JM
    De León, SS
    Toledo, J
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (01) : 285 - 306
  • [4] ANDREU F, 1997, ADV MATH SCI APPL, V7, P183
  • [5] [Anonymous], 1979, COMMENT MATH U CAROL
  • [6] THE EULER EQUATION FOR FUNCTIONALS WITH LINEAR GROWTH
    ANZELLOTTI, G
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 290 (02) : 483 - 501
  • [7] ANZELLOTTI G, 1983, ANN MAT PUR APPL, V135, P294
  • [8] BALLESTER C, INTERPOLATION PLANE
  • [9] BENILAN P, 1991, LECT NOTES PURE APPL, V135, P41
  • [10] Benilan P., 1995, ANN SCUOLA NORM-SCI, V22, P241