Online State of Charge Estimation of Lithium-ion Battery Cells: A Multiple Model Adaptive Estimation Approach

被引:0
|
作者
Su, Jiayi [1 ]
Schneider, Susan [1 ]
Yaz, Edwin [1 ]
Josse, Fabien [1 ]
机构
[1] Marquette Univ, Coll Engn, Dept Elect Engn, 1515 W Wisconsin Ave, Milwaukee, WI 53233 USA
关键词
MANAGEMENT-SYSTEMS; PACKS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate state of charge (SOC) estimation of Lithium-ion battery cells is critical since they are commonly used in a variety of applications. However, the complex chemical reactions inside the cell makes its model nonlinear, which increases the difficulty of the SOC estimation. An accurate online estimation technique to determine the SOC estimate can improve the safety of Lithium-ion cells. More importantly, cell performance and life cycle can also be improved. In this work, the nonlinear state estimation problem of determining SOC is converted to a linear estimation problem solved in a parallel fashion. Multiple model adaptive estimation (MMAE) technique based on a bank of Kalman filters is used to adaptively estimate the SOC. Simulation results for a LiFePO4 Lithium-ion battery cell demonstrate that this technique provides smaller estimation error compared to the Extended Kalman filter.
引用
收藏
页码:4447 / 4452
页数:6
相关论文
共 50 条
  • [31] State of Charge Estimation for Lithium-Ion Battery with a Temperature-Compensated Model
    Yang, Shichun
    Deng, Cheng
    Zhang, Yulong
    He, Yongling
    ENERGIES, 2017, 10 (10):
  • [32] Research on Modeling and State of Charge Estimation for Lithium-ion Battery
    Sun, Dong
    Chen, Xikun
    Ruan, Yi
    2014 INTERNATIONAL ELECTRONICS AND APPLICATION CONFERENCE AND EXPOSITION (PEAC), 2014, : 1401 - 1406
  • [33] Adaptive Kalman filter based state of charge estimation algorithm for lithium-ion battery
    Zheng Hong
    Liu Xu
    Wei Min
    CHINESE PHYSICS B, 2015, 24 (09)
  • [34] Adaptive Kalman filter based state of charge estimation algorithm for lithium-ion battery
    郑宏
    刘煦
    魏旻
    Chinese Physics B, 2015, (09) : 585 - 591
  • [35] State of charge estimation of lithium-ion battery based on improved adaptive boosting algorithm
    Zhao, Xiaobo
    Jung, Seunghun
    Wang, Biao
    Xuan, Dongji
    JOURNAL OF ENERGY STORAGE, 2023, 71
  • [36] A Nonlinear Adaptive Observer Approach for State of Charge Estimation of Lithium-Ion Batteries
    Li, Yonghua
    Anderson, R. Dyche
    Song, Jing
    Phillips, Anthony M.
    Wang, Xu
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 370 - 375
  • [37] Interacting Multiple Model for Lithium-Ion Battery State of Charge Estimation Based on the Electrochemical Impedance Spectroscopy
    Huang, Ce
    Wu, Haibin
    Li, Zhi
    Li, Ran
    Sun, Hui
    ELECTRONICS, 2023, 12 (04)
  • [38] An adaptive hybrid approach for online battery state of charge estimation
    Lin, Qiongbin
    Hong, Huiyang
    Huang, Ruochen
    Fan, Yuhang
    Chen, Jia
    Wang, Yaxiong
    Dan, Zhimin
    JOURNAL OF ENERGY STORAGE, 2025, 115
  • [39] On Physical Modeling of Lithium-Ion Cells and Adaptive Estimation of their State-of-Charge
    Zonetti, Daniele
    Yi, Bowen
    Aranovskiy, Stanislav
    Efimov, Denis
    Ortega, Romeo
    Garcia-Quismondo, Enrique
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 2176 - 2181
  • [40] Establishment of a Lithium-Ion Battery Model Considering Environmental Temperature for Battery State of Charge Estimation
    Wang, Jiabin
    Du, Jianhua
    Tan, Birong
    Cao, Xin
    Qu, Chang
    Ou, Yingjie
    He, Xingfeng
    Xiong, Leji
    Tu, Ran
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (12)