Multi-mode ratiometric thermometry using thermo-intensified NIR emission

被引:46
作者
Pu, Luyao [1 ]
Wang, Yu [1 ]
Zhao, Jiaoyin [1 ]
Jin, Minkun [2 ]
Li, Leipeng [1 ]
Li, Panlai [1 ]
Wang, Zhijun [1 ]
Guo, Chongfeng [2 ]
Suo, Hao [1 ]
机构
[1] Hebei Univ, Coll Phys Sci & Technol, Natl Local Joint Engn Lab New Energy Photoelect De, Hebei Key Lab Opt Elect Informat & Mat, Baoding 071002, Peoples R China
[2] Northwest Univ, Inst Photon & Photon Technol, State Key Lab Photon Technol Western China Energy, Xian 710127, Peoples R China
基金
中国国家自然科学基金;
关键词
Phosphor; Luminescence thermometry; Thermal enhancement; Near-infrared emission;
D O I
10.1016/j.cej.2022.137890
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Luminescence ratiometric thermometry has enabled fast-responsive and non-invasive temperature detection in microelectronic devices and biological systems, but it still suffers from limited thermal sensitivity and serious thermal quenching effects. Herein, a facile hydrothermal method was developed to construct monodispersed candy-like NaY(MoO4)2:Yb3+/Nd3+micro-thermometers that exhibit efficient near-infrared anti-stokes lumi-nescence under 980 nm excitation. By leveraging active lattice phonon, phonon-assisted Yb3+-> Nd3+energy transfer and excited-state absorption of Nd3+were greatly promoted as the temperature elevated, resulting in a giant and reversible enhancement of 4F7/2, 4S3/2 -> 4I11/2 transition by around 1683-folds. Luminescence in-tensity ratios of these near-infrared emissions featured a strong thermal response under the excitation of 980 and 808 nm, enabling the multi-mode thermometry with high sensitivity and resolution (Sr =4.69% K1 and delta T =0.071 K at 303 K). A flexible thermometer was further fabricated by embedding as-prepared microcrystals into the thin-film substrate, offering precise multi-mode thermal monitoring at the local hotspot in the electronic component.
引用
收藏
页数:6
相关论文
共 33 条
[1]   Bandshift Luminescence Thermometry Using Mn4+:Na4Mg(WO4)3 Phosphors [J].
Amarasinghe, Dinesh K. ;
Rabuffetti, Federico A. .
CHEMISTRY OF MATERIALS, 2019, 31 (24) :10197-10204
[2]   Luminescent lanthanide nanocomposites in thermometry: Chemistry of dopant ions and host matrices [J].
Ansari, Anees A. ;
Parchur, Abdul K. ;
Nazeeruddin, M. K. ;
Tavakoli, Mohammad M. .
COORDINATION CHEMISTRY REVIEWS, 2021, 444
[3]   Pulsed Laser Deposited Dysprosium-Doped Gadolinium-Vanadate Thin Films for Noncontact, Self-Referencing Luminescence Thermometry [J].
Antic, Zeljka ;
Dramicanin, Miroslav D. ;
Prashanthi, Kovur ;
Jovanovic, Dragana ;
Kuzman, Sanja ;
Thundat, Thomas .
ADVANCED MATERIALS, 2016, 28 (35) :7745-+
[4]   Ratiometric Optical Thermometer Based on Dual Near-Infrared Emission in Cr3+-Doped Bismuth-Based Gallate Host [J].
Back, Michele ;
Trave, Enrico ;
Ueda, Jumpei ;
Tanabe, Setsuhisa .
CHEMISTRY OF MATERIALS, 2016, 28 (22) :8347-8356
[5]   A stoichiometric terbium-europium dyad molecular thermometer: energy transfer properties [J].
Bao, Guochen ;
Wong, Ka-Leung ;
Jin, Dayong ;
Tanner, Peter A. .
LIGHT-SCIENCE & APPLICATIONS, 2018, 7
[6]   Luminescence based temperature bio-imaging: Status, challenges, and perspectives [J].
Bednarkiewicz, A. ;
Drabik, J. ;
Trejgis, K. ;
Jaque, D. ;
Ximendes, E. ;
Marciniak, L. .
APPLIED PHYSICS REVIEWS, 2021, 8 (01)
[7]   Standardizing luminescence nanothermometry for biomedical applications [J].
Bednarkiewicz, Artur ;
Marciniak, Lukasz ;
Carlos, Luis D. ;
Jaque, Daniel .
NANOSCALE, 2020, 12 (27) :14405-14421
[8]  
Brites CDS, 2016, HBK PHYS CHEM RARE, V49, P339, DOI 10.1016/bs.hpcre.2016.03.005
[9]   Lanthanide-Based Thermometers: At the Cutting-Edge of Luminescence Thermometry [J].
Brites, Carlos D. S. ;
Balabhadra, Sangeetha ;
Carlos, Luis D. .
ADVANCED OPTICAL MATERIALS, 2019, 7 (05)
[10]   Thermometry at the nanoscale [J].
Brites, Carlos D. S. ;
Lima, Patricia P. ;
Silva, Nuno J. O. ;
Millan, Angel ;
Amaral, Vitor S. ;
Palacio, Fernando ;
Carlos, Luis D. .
NANOSCALE, 2012, 4 (16) :4799-4829