Characterization of inositol lipid metabolism in gut-associated Bacteroidetes

被引:24
作者
Heaver, Stacey L. [1 ]
Le, Henry H. [2 ]
Tang, Peijun [3 ]
Basle, Arnaud [4 ]
Barone, Claudia Mirretta [1 ]
Vu, Dai Long [5 ]
Waters, Jillian L. [1 ]
Marles-Wright, Jon [4 ,6 ]
Johnson, Elizabeth L. [2 ]
Campopiano, Dominic J. [3 ]
Ley, Ruth E. [1 ,7 ]
机构
[1] Max Planck Inst Biol Tubingen, Dept Microbiome Sci, Tubingen, Germany
[2] Cornell Univ, Div Nutr Sci, Ithaca, NY 14853 USA
[3] Univ Edinburgh, Sch Chem, Edinburgh, Midlothian, Scotland
[4] Newcastle Univ, Biosci Inst, Newcastle Upon Tyne, Tyne & Wear, England
[5] Max Planck Inst Biol Tubingen, Mass Spectrometry Facil, Tubingen, Germany
[6] Newcastle Univ, Sch Nat & Environm Sci, Newcastle Upon Tyne, Tyne & Wear, England
[7] Cluster Excellence EXC 2124 Controlling Microbes, Tubingen, Germany
基金
英国生物技术与生命科学研究理事会;
关键词
STRUCTURAL-ANALYSIS; GENE-EXPRESSION; PHOSPHATIDYLINOSITOL; SPHINGOLIPIDS; PHOSPHORYLCERAMIDE; PHOSPHOLIPIDS; BIOSYNTHESIS; HOMEOSTASIS; ALIGNMENT; SYMBIONT;
D O I
10.1038/s41564-022-01152-6
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The pathways responsible for inositol lipid production in human gut Bacteroides are characterized and these lipids are important for capsule expression and antimicrobial peptide resistance in vitro and colonization in vivo. Inositol lipids are ubiquitous in eukaryotes and have finely tuned roles in cellular signalling and membrane homoeostasis. In Bacteria, however, inositol lipid production is relatively rare. Recently, the prominent human gut bacterium Bacteroides thetaiotaomicron (BT) was reported to produce inositol lipids and sphingolipids, but the pathways remain ambiguous and their prevalence unclear. Here, using genomic and biochemical approaches, we investigated the gene cluster for inositol lipid synthesis in BT using a previously undescribed strain with inducible control of sphingolipid synthesis. We characterized the biosynthetic pathway from myo-inositol-phosphate (MIP) synthesis to phosphoinositol dihydroceramide, determined the crystal structure of the recombinant BT MIP synthase enzyme and identified the phosphatase responsible for the conversion of bacterially-derived phosphatidylinositol phosphate (PIP-DAG) to phosphatidylinositol (PI-DAG). In vitro, loss of inositol lipid production altered BT capsule expression and antimicrobial peptide resistance. In vivo, loss of inositol lipids decreased bacterial fitness in a gnotobiotic mouse model. We identified a second putative, previously undescribed pathway for bacterial PI-DAG synthesis without a PIP-DAG intermediate, common in Prevotella. Our results indicate that inositol sphingolipid production is widespread in host-associated Bacteroidetes and has implications for symbiosis.
引用
收藏
页码:986 / +
页数:29
相关论文
共 87 条
[41]   A Phosphatidylinositol 3-Kinase Effector Alters Phagosomal Maturation to Promote Intracellular Growth of Francisella [J].
Ledvina, Hannah E. ;
Kelly, Katherine A. ;
Eshraghi, Aria ;
Plemel, Rachael L. ;
Peterson, S. Brook ;
Lee, Brian ;
Steele, Shaun ;
Adler, Marlen ;
Kawula, Thomas H. ;
Merz, Alexey J. ;
Skerrett, Shawn J. ;
Celli, Jean ;
Mougous, Joseph D. .
CELL HOST & MICROBE, 2018, 24 (02) :285-+
[42]   Inositol phosphorylceramide synthase is located in the Golgi apparatus of Saccharomyces cerevisiae [J].
Levine, TP ;
Wiggins, CAR ;
Munro, S .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (07) :2267-2281
[43]   Engineered Regulatory Systems Modulate Gene Expression of Human Commensals in the Gut [J].
Lim, Bentley ;
Zimmermann, Michael ;
Barry, Natasha A. ;
Goodman, Andrew L. .
CELL, 2017, 169 (03) :547-+
[44]   A comprehensive insight into the lipid composition of Myxococcus xanthus by UPLC-ESI-MS [J].
Lorenzen, Wolfram ;
Bozhueyuek, Kenan A. J. ;
Cortina, Nina S. ;
Bode, Helge B. .
JOURNAL OF LIPID RESEARCH, 2014, 55 (12) :2620-2633
[45]   Streptomyces phospholipase D mutants with altered substrate specificity capable of phosphatidylinositol synthesis [J].
Masayama, Atsushi ;
Takahashi, Tetsuya ;
Tsukada, Kaori ;
Nishikawa, Seigo ;
Takahashi, Rie ;
Adach, Masaatsu ;
Koga, Kazushi ;
Suzuki, Atsuo ;
Yamane, Takashi ;
Nakano, Hideo ;
Iwasaki, Yugo .
CHEMBIOCHEM, 2008, 9 (06) :974-981
[46]   Identification of Genes Required for Glucan Exopolysaccharide Production in Lactobacillus johnsonii Suggests a Novel Biosynthesis Mechanism [J].
Mayer, Melinda J. ;
D'Amato, Alfonsina ;
Colquhoun, Ian J. ;
Le Gall, Gwenaelle ;
Narbad, Arjan .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2020, 86 (08)
[47]   Phaser crystallographic software [J].
McCoy, Airlie J. ;
Grosse-Kunstleve, Ralf W. ;
Adams, Paul D. ;
Winn, Martyn D. ;
Storoni, Laurent C. ;
Read, Randy J. .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2007, 40 :658-674
[48]   Inositol-phosphodihydroceramides in the periodontal pathogen Tannerella forsythia: Structural analysis and incorporation of exogenous myo-inositol [J].
Megson, Zoe Anne ;
Pittenauer, Ernst ;
Duda, Katarzyna Anna ;
Engel, Regina ;
Ortmayr, Karin ;
Koellensperger, Gunda ;
Mach, Lukas ;
Allmaier, Guenter ;
Holst, Otto ;
Messner, Paul ;
Schaeffer, Christina .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2015, 1851 (11) :1417-1427
[49]   Making Sense of the Yeast Sphingolipid Pathway [J].
Megyeri, Marton ;
Riezman, Howard ;
Schuldiner, Maya ;
Futerman, Anthony H. .
JOURNAL OF MOLECULAR BIOLOGY, 2016, 428 (24) :4765-4775
[50]  
MERKLE RK, 1994, METHOD ENZYMOL, V230, P1