Morphological, thermal, and mechanical properties of cellulose nanocrystal reinforced poly(lactic acid) and poly(butylene adipate-co-terephthalate): A comparative study on common and novel solvent casting methods

被引:6
作者
Mohammadi, Mojtaba [1 ]
Heuzey, Marie-Claude [1 ]
Carreau, Pierre J. [1 ]
机构
[1] Ecole Polytech Montreal, Ctr High Performance Polymer & Composite Syst CRE, Dept Chem Engn, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
DMA modeling; mechanical and thermal properties; PLA and PBAT; CNC nanocomposites; solvent casting methods; BIO-NANOCOMPOSITES; POLYLACTIDE; DISPERSION; BEHAVIOR; DEGRADATION; CRYSTALLIZATION; MICROSTRUCTURE; NANOWHISKERS; ELECTROSPUN; EXTRUSION;
D O I
10.1002/pc.26332
中图分类号
TB33 [复合材料];
学科分类号
摘要
The mechanical and thermal properties of semicrystalline (sc) and amorphous (a) poly(lactic acid), PLA, and poly(butylene adipate-co-terephthalate), PBAT, and their nanocomposites containing 1 and 3 wt% CNCs, prepared through solvent casting methods using one (N,N-dimethylformamide [DMF]) or two (dimethyl sulfoxide (DMSO), and tetrahydrofuran (THF)) solvents were analyzed. Differential scanning calorimetry (DSC) showed that the total amount of crystals of the scPLA/CNC nanocomposites increased, whereas it decreased in the PBAT/CNC systems. In both cases, the crystallization temperature increased with CNC content. In tensile experiments, the Young modulus and yield strength of all nanocomposites were found to increase by incorporating CNCs, more significantly for the samples prepared using one solvent. The elongation at break of both PLA nanocomposites increased when prepared via one solvent, while it decreased for the two solvent methods as well as for PBAT nanocomposites prepared by both methods. The impact properties of the samples prepared by the two solvent methods decreased. In contrast, for the one solvent method, incorporating 3 wt% CNCs improved the impact properties by 32% and 9% in scPLA and aPLA, respectively, but decreased by 4% in PBAT nanocomposites. Also, in dynamic mechanical thermal analysis (DMA) the storage modulus of scPLA and PBAT/CNC systems increased significantly, especially in the rubbery region (5-85 MPa and 105-155 MPa, respectively). Using a percolation model, the strength of the percolating CNC was found to be dependent on temperature and affected by traces of solvent mostly in the scPLA nanocomposites.
引用
收藏
页码:6688 / 6703
页数:16
相关论文
共 50 条
  • [21] A Comparative Study on the Aerobic Biodegradation of the Biopolymer Blends of Poly(butylene succinate), Poly(butylene adipate terephthalate) and Poly(lactic acid)
    Nomadolo, Nomvuyo
    Dada, Omotola Esther
    Swanepoel, Andri
    Mokhena, Teboho
    Muniyasamy, Sudhakar
    POLYMERS, 2022, 14 (09)
  • [22] Rheological, thermal and mechanical properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate)/poly(propylene carbonate) polyurethane trinary blown films
    Zhao, Jili
    Li, Xin
    Pan, Hongwei
    Ai, Xue
    Yang, Huili
    Zhang, Huiliang
    Gao, Ge
    Dong, Lisong
    POLYMER BULLETIN, 2020, 77 (08) : 4235 - 4258
  • [23] Effect of the Joncryl® ADR Compatibilizing Agent in Blends of Poly(butylene adipate-co-terephthalate)/Poly(lactic acid)
    Nunes, Edilene de C. D.
    de Souza, Alana G.
    Rosa, Derval dos S.
    MACROMOLECULAR SYMPOSIA, 2019, 383 (01)
  • [24] Phase Structure Analysis and Composition Optimization of Poly(Lactic Acid)/Poly(Butylene Adipate-co-terephthalate) Blends
    Li, Guozhong
    Xia, Ying
    Mu, Guangqing
    Yang, Qian
    Zhou, Huimin
    Lin, Xiaojian
    Gao, Yuanmei
    Qian, Fang
    JOURNAL OF MACROMOLECULAR SCIENCE PART B-PHYSICS, 2022, 61 (03): : 413 - 424
  • [25] Mathematical modeling of mechanical and barrier properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate)/thermoplastic starch based nanocomposites
    Manepalli, Pavan Harshit
    Alavi, Sajid
    JOURNAL OF FOOD ENGINEERING, 2019, 261 : 60 - 65
  • [26] Fabrication of reinforced and toughened poly(lactic acid)/poly(butylene adipate-co-terephthalate) composites through solid die drawing process
    Zhang, Tongying
    Wu, Pingping
    Yang, Qi
    Jiang, Jian
    JOURNAL OF APPLIED POLYMER SCIENCE, 2020, 137 (36)
  • [27] Effect of mixing strategy on thermal and mechanical properties of poly(butylene adipate-co-terephthalate)/poly(lactic acid) incorporated with CaCO3 fillers
    Xie, Jiaxiang
    JOURNAL OF POLYMER RESEARCH, 2023, 30 (06)
  • [28] Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions
    Weng, Yun-Xuan
    Jin, Yu-Juan
    Meng, Qing-Yang
    Wang, Lei
    Zhang, Min
    Wang, Yu-Zhong
    POLYMER TESTING, 2013, 32 (05) : 918 - 926
  • [29] Chemical modification of poly(lactic acid) and its use as matrix in poly(lactic acid) poly(butylene adipate-co-terephthalate) blends
    Rigolin, Talita Rocha
    Costa, Lidiane Cristina
    Chinelatto, Marcelo Aparecido
    Riveros Munoz, Pablo Andres
    Prado Bettini, Silvia Helena
    POLYMER TESTING, 2017, 63 : 542 - 549
  • [30] Morphology, miscibility and continuity development in poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends
    Dil, Ebrahim Jalali
    Carreau, P. J.
    Favis, Basil D.
    POLYMER, 2015, 68 : 202 - 212