Phase front instability in periodically forced oscillatory systems

被引:54
作者
Elphick, C
Hagberg, A
Meron, E
机构
[1] Ctr Fis No Lineal & Sistemas Complejos Santiago, Santiago, Chile
[2] Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[3] Univ Calif Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[4] Ben Gurion Univ Negev, Jacob Blaustein Inst Desert Res, IL-84990 Sede Boqer, Israel
[5] Ben Gurion Univ Negev, Dept Phys, IL-84990 Sede Boqer, Israel
关键词
D O I
10.1103/PhysRevLett.80.5007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Multiplicity of phase states within frequency locked bands in periodically forced oscillatory systems may give rise to front structures separating states with different phases. A new front instability is found within bands where omega(forcing)/omega(system) = 2n (n > 1). Stationary fronts shifting the oscillation phase by pi lose stability below a critical forcing strength and decompose into n traveling fronts each shifting the phase by pi/n. The instability designates a transition from stationary two-phase patterns to traveling n-phase patterns.
引用
收藏
页码:5007 / 5010
页数:4
相关论文
共 15 条
[1]   STRONG RESONANCES OF SPATIALLY DISTRIBUTED OSCILLATORS - A LABORATORY TO STUDY PATTERNS AND DEFECTS [J].
COULLET, P ;
EMILSSON, K .
PHYSICA D, 1992, 61 (1-4) :119-131
[2]   BREAKING CHIRALITY IN NONEQUILIBRIUM SYSTEMS [J].
COULLET, P ;
LEGA, J ;
HOUCHMANDZADEH, B ;
LAJZEROWICZ, J .
PHYSICAL REVIEW LETTERS, 1990, 65 (11) :1352-1355
[3]  
COULLET P, 1996, INSTABILITIES NONEQU, V5
[4]   On the origin of traveling pulses in bistable systems [J].
Elphick, C ;
Hagberg, A ;
Malomed, BA ;
Meron, E .
PHYSICS LETTERS A, 1997, 230 (1-2) :33-37
[5]   NORMAL-FORM REDUCTION FOR TIME-PERIODICALLY DRIVEN DIFFERENTIAL-EQUATIONS [J].
ELPHICK, C ;
IOOSS, G ;
TIRAPEGUI, E .
PHYSICS LETTERS A, 1987, 120 (09) :459-463
[6]   QUASI-PERIODICITY IN DISSIPATIVE SYSTEMS - A RENORMALIZATION-GROUP ANALYSIS [J].
FEIGENBAUM, MJ ;
KADANOFF, LP ;
SHENKER, SJ .
PHYSICA D, 1982, 5 (2-3) :370-386
[7]   PERTURBATION OF A HOPF-BIFURCATION BY AN EXTERNAL TIME-PERIODIC FORCING [J].
GAMBAUDO, JM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 57 (02) :172-199
[8]   PATTERN-FORMATION IN NONGRADIENT REACTION-DIFFUSION SYSTEMS - THE EFFECTS OF FRONT BIFURCATIONS [J].
HAGBERG, A ;
MERON, E .
NONLINEARITY, 1994, 7 (03) :805-835
[9]   TRANSITION TO CHAOS BY INTERACTION OF RESONANCES IN DISSIPATIVE SYSTEMS .1. CIRCLE MAPS [J].
JENSEN, MH ;
BAK, P ;
BOHR, T .
PHYSICAL REVIEW A, 1984, 30 (04) :1960-1969
[10]   SYMMETRY-BREAKING IN NONEQUILIBRIUM SYSTEMS - INTERACTION OF DEFECTS [J].
KORZINOV, L ;
RABINOVICH, MI ;
TSIMRING, LS .
PHYSICAL REVIEW A, 1992, 46 (12) :7601-7607