A general framework for multivariate functional principal component analysis of amplitude and phase variation

被引:10
作者
Happ, Clara [1 ,3 ]
Scheipl, Fabian [1 ]
Gabriel, Alice-Agnes [2 ]
Greven, Sonja [1 ]
机构
[1] Ludwig Maximilians Univ Munchen, Dept Stat, D-80539 Munich, Germany
[2] Ludwig Maximilians Univ Munchen, Dept Geophys, Munich, Germany
[3] Ludwigstr 33, D-80539 Munich, Germany
基金
欧盟地平线“2020”;
关键词
Bayes Hilbert space; Frechet variance; functional data analysis; registration; seismology; transformation of warping functions; DENSITY-FUNCTIONS; 1994; NORTHRIDGE; CALIFORNIA; TOPOGRAPHY; VALLEY; MOTION;
D O I
10.1002/sta4.220
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Functional data typically contain amplitude and phase variation. In many data situations, phase variation is treated as a nuisance effect and is removed during preprocessing, although it may contain valuable information. In this note, we focus on joint principal component analysis (PCA) of amplitude and phase variation. As the space of warping functions has a complex geometric structure, one key element of the analysis is transforming the warping functions to L2(T). We present different transformation approaches and show how they fit into a general class of transformations. This allows us to compare their strengths and limitations. In the context of PCA, our results offer arguments in favour of the centred log-ratio transformation. We further embed two existing approaches from the literature for joint PCA of amplitude and phase variation into the framework of multivariate functional PCA, where we study the properties of the estimators based on an appropriate metric. The approach is illustrated through an application from seismology.
引用
收藏
页数:12
相关论文
共 31 条
[1]   An introduction to semiparametric function-on-scalar regression [J].
Bauer, Alexander ;
Scheipl, Fabian ;
Kuechenhoff, Helmut ;
Gabriel, Alice-Agnes .
STATISTICAL MODELLING, 2018, 18 (3-4) :346-364
[2]  
BOORE DM, 1973, B SEISMOL SOC AM, V63, P1603
[3]  
BOUCHON M, 1973, B SEISMOL SOC AM, V63, P615
[4]   Quantitative Comparison of Four Numerical Predictions of 3D Ground Motion in the Grenoble Valley, France [J].
Chaljub, Emmanuel ;
Moczo, Peter ;
Tsuno, Seiji ;
Bard, Pierre-Yves ;
Kristek, Jozef ;
Kaeser, Martin ;
Stupazzini, Marco ;
Kristekova, Miriam .
BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2010, 100 (04) :1427-1455
[5]   MULTIVARIATE FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS: A NORMALIZATION APPROACH [J].
Chiou, Jeng-Min ;
Chen, Yu-Ting ;
Yang, Ya-Fang .
STATISTICA SINICA, 2014, 24 (04) :1571-1596
[6]   Hilbert space of probability density functions based on Aitchison geometry [J].
Egozcue, J. J. ;
Diaz-Barrero, J. L. ;
Pawlowsky-Glahn, V. .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (04) :1175-1182
[7]   Unifying Amplitude and Phase Analysis: A Compositional Data Approach to Functional Multivariate Mixed-Effects Modeling of Mandarin Chinese [J].
Hadjipantelis, P. Z. ;
Aston, J. A. D. ;
Mueller, H. G. ;
Evans, J. P. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (510) :545-559
[8]  
Happ C, 2018, MFPCA MULTIVARIATE F
[9]   Multivariate Functional Principal Component Analysis for Data Observed on Different (Dimensional) Domains [J].
Happ, Clara ;
Greven, Sonja .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (522) :649-659
[10]   THE 1994 NORTHRIDGE EARTHQUAKE SEQUENCE IN CALIFORNIA - SEISMOLOGICAL AND TECTONIC ASPECTS [J].
HAUKSSON, E ;
JONES, LM ;
HUTTON, K .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1995, 100 (B7) :12335-12355