Donoho-Logan large sieve principles for modulation and polyanalytic Fock spaces

被引:18
作者
Abreu, Luis Daniel [1 ]
Speckbacher, Michael [1 ]
机构
[1] Austrian Acad Sci, Acoust Res Inst, Wohllebengasse 12-14, A-1040 Vienna, Austria
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2021年 / 171卷
基金
奥地利科学基金会;
关键词
Large sieve; Gabor analysis; Polyanalytic functions; Higher Landau levels; Modulation spaces; Signal recovering; INTEGRABLE GROUP-REPRESENTATIONS; UNCERTAINTY PRINCIPLES; GABOR; BARGMANN; FORMULAS;
D O I
10.1016/j.bulsci.2021.103032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain estimates for the L-p-norm of the short-time Fourier transform (STFT) for functions in modulation spaces, providing information about the concentration on a given subset of R-2, leading to deterministic guarantees for perfect reconstruction using convex optimization methods. More precisely, we obtain large sieve inequalities of the Donoho-Logan type, but instead of localizing the signals in regions T x W of the time-frequency plane using the Fourier transform to intertwine time and frequency, we localize the representation of the signals in terms of the short-time Fourier transform in sets Delta with arbitrary geometry. At the technical level, since there is no proper analogue of Beurling's extremal function in the STFT setting, we introduce a new method, which rests on a combination of an argument similar to Schur's test with an extension of Seip's local reproducing formula to general Hermite windows. When the windows are Hermite functions, we obtain local reproducing formulas for polyanalytic Fock spaces which lead to explicit large sieve constant estimates and, as a byproduct, to a reconstruction formula for f is an element of L-2 (R) from its STFT values on arbitrary discs. (C) 2021 Published by Elsevier Masson SAS.
引用
收藏
页数:25
相关论文
共 55 条
[1]   Discrete coherent states for higher Landau levels [J].
Abreu, L. D. ;
Balazs, P. ;
de Gosson, M. ;
Mouayn, Z. .
ANNALS OF PHYSICS, 2015, 363 :337-353
[2]  
Abreu L D., 2014, Harmonic and complex analysis and its applications, Trends Math., P1
[3]  
Abreu L.D., 2017, ARXIV170403042V1
[4]  
Abreu LD, 2017, 2017 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), P283, DOI 10.1109/SAMPTA.2017.8024412
[5]   An inverse problem for localization operators [J].
Abreu, Luis Daniel ;
Doerfler, Monika .
INVERSE PROBLEMS, 2012, 28 (11)
[6]   Banach Gabor frames with Hermite functions: polyanalytic spaces from the Heisenberg group [J].
Abreu, Luis Daniel ;
Groechenig, Karlheinz .
APPLICABLE ANALYSIS, 2012, 91 (11) :1981-1997
[7]   On the structure of Gabor and super Gabor spaces [J].
Abreu, Luis Daniel .
MONATSHEFTE FUR MATHEMATIK, 2010, 161 (03) :237-253
[9]   Sampling measures for the Gabor transform [J].
Ascensi, Gerard .
JOURNAL OF APPROXIMATION THEORY, 2015, 200 :40-67
[10]   Explicit formulas for reproducing kernels of generalized bargmann spaces [J].
Askour, NE ;
Intissar, A ;
Mouayn, Z .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (07) :707-712