Robust Object Tracking via Sparse Collaborative Appearance Model

被引:283
|
作者
Zhong, Wei [1 ]
Lu, Huchuan [1 ]
Yang, Ming-Hsuan [2 ]
机构
[1] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Sch Informat & Commun Engn, Dalian 116024, Peoples R China
[2] Univ Calif, Sch Engn, Merced, CA 95344 USA
基金
美国国家科学基金会;
关键词
Object tracking; collaborative model; sparse representation; feature selection; occlusion handling; VISUAL TRACKING;
D O I
10.1109/TIP.2014.2313227
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a robust object tracking algorithm based on a sparse collaborative model that exploits both holistic templates and local representations to account for drastic appearance changes. Within the proposed collaborative appearance model, we develop a sparse discriminative classifier (SDC) and sparse generative model (SGM) for object tracking. In the SDC module, we present a classifier that separates the foreground object from the background based on holistic templates. In the SGM module, we propose a histogram-based method that takes the spatial information of each local patch into consideration. The update scheme considers both the most recent observations and original templates, thereby enabling the proposed algorithm to deal with appearance changes effectively and alleviate the tracking drift problem. Numerous experiments on various challenging videos demonstrate that the proposed tracker performs favorably against several state-of-the-art algorithms.
引用
收藏
页码:2356 / 2368
页数:13
相关论文
共 50 条
  • [1] Robust Object Tracking via Local Sparse Appearance Model
    Nai, Ke
    Li, Zhiyong
    Li, Guiji
    Wang, Shanquan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (10) : 4958 - 4970
  • [2] Robust Object Tracking via Weight-based Local Sparse Appearance Model
    Li, Zhiyong
    Wang, Dongming
    Nai, Ke
    Shen, Tong
    Zeng, Ying
    2016 12TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2016, : 560 - 565
  • [3] Robust object tracking using sparse color appearance model
    Yang, Wenguang
    Luo, Zijuan
    Ren, Kan
    Wan, Minjie
    Qian, Ye
    Xu, Yunkai
    Qian, Weixian
    JOURNAL OF ELECTRONIC IMAGING, 2021, 30 (06)
  • [4] Robust object tracking based on local region sparse appearance model
    Han, Guang
    Wang, Xingyue
    Liu, Jixin
    Sun, Ning
    Wang, Cailing
    NEUROCOMPUTING, 2016, 184 : 145 - 167
  • [5] Robust Visual Tracking via Collaborative Motion and Appearance Model
    Tu, Fangwen
    Ge, Shuzhi Sam
    Tang, Yazhe
    Hang, Chang Chieh
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2017, 13 (05) : 2251 - 2259
  • [6] Patchwise object tracking via structural local sparse appearance model
    Kashiyani, Hossein
    Shokouhi, Shahriar B.
    PROCEEDINGS OF THE 2017 7TH INTERNATIONAL CONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE), 2017, : 125 - 130
  • [7] A Robust Appearance Model for Object Tracking
    Li, Yi
    Lu, Xiaohuan
    He, Zhenyu
    Wang, Hongpeng
    Chen, Wen-Sheng
    2016 7TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA (CCBD), 2016, : 248 - 253
  • [8] Object tracking via appearance modeling and sparse representation
    Chen, Feng
    Wang, Qing
    Wang, Song
    Zhang, Weidong
    Xu, Wenli
    IMAGE AND VISION COMPUTING, 2011, 29 (11) : 787 - 796
  • [9] ROBUST OBJECT TRACKING VIA INCREMENTAL SUBSPACE DYNAMIC SPARSE MODEL
    Ji, Zhangjian
    Wang, Weiqiang
    Xu, Ning
    2014 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2014,
  • [10] Robust visual tracking of infrared object via sparse representation model
    Ma, Junkai
    Luo, Haibo
    Chang, Zheng
    Hui, Bin
    INTERNATIONAL SYMPOSIUM ON OPTOELECTRONIC TECHNOLOGY AND APPLICATION 2014: IMAGE PROCESSING AND PATTERN RECOGNITION, 2014, 9301