Defective ZnS nanoparticles anchored in situ on N-doped carbon as a superior oxygen reduction reaction catalyst

被引:32
作者
Hu, Libing [1 ]
Wei, Zengxi [2 ]
Yu, Feng [1 ]
Yuan, Huifang [1 ]
Liu, Mincong [1 ]
Wang, Gang [1 ]
Peng, Banghua [1 ]
Dai, Bin [1 ]
Ma, Jianmin [2 ,3 ,4 ]
机构
[1] Shihezi Univ, Sch Chem & Chem Engn, Key Lab Green Proc Chem Engn Xinjiang Bingtuan, Shihezi 832003, Xinjiang, Peoples R China
[2] Hunan Univ, Sch Phys & Elect, Changsha 410082, Hunan, Peoples R China
[3] Xian Univ Technol, Inst Adv Electrochem Energy, Xian 710048, Shaanxi, Peoples R China
[4] Zhengzhou Univ, Key Lab Mat Proc & Mold, Minist Educ, Zhengzhou 450002, Henan, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2019年 / 39卷
基金
中国国家自然科学基金;
关键词
Defective ZnS nanoparticle; Zn vacancy; Electrocatalyst; Oxygen reduction reaction; Density functional theory calculations; EFFICIENT; ELECTROCATALYSTS; BATTERIES; OXIDE; MOS2;
D O I
10.1016/j.jechem.2019.01.018
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Defect engineering has been used to develop low-cost and effective catalysts to boost oxygen reduction reactions. However, the development of catalysts that use metal cation vacancies as the active sites for oxygen reduction reaction is lacking. In this study, ZnS nanoparticles on N-doped carbon serve as an oxygen reduction reaction catalyst. These catalysts were prepared via a one-step method at 900 degrees C. Amazingly, the high-resolution transmission electron microscope image revealed obvious defects in the ZnS nanoparticles. These facilitated the catalyst synthesis, and the product displayed good electrocatalytic performance for the oxygen reduction reaction in an alkaline medium, including a lower onset potential, lower mid-wave potential, four electron transfer process, and better durability compared with 20 wt% Pt/C. More importantly, the density functional theory results indicated that using the Zn vacancies in the prepared catalyst as active sites required a lower reaction energy to produce OOH* from *OO toward oxygen reduction reaction. Therefore, the proposed catalyst with Zn vacancies can be used as a potential electrocatalyst and may be substitutes for Pt-based catalysts in fuel cells, given the novel catalyst's resulting performance. (C) 2019 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
引用
收藏
页码:152 / 159
页数:8
相关论文
共 47 条
[1]   Nitrogen and Sulfur Codoped Graphene: Multifunctional Electrode Materials for High-Performance Li-Ion Batteries and Oxygen Reduction Reaction [J].
Ai, Wei ;
Luo, Zhimin ;
Jiang, Jian ;
Zhu, Jianhui ;
Du, Zhuzhu ;
Fan, Zhanxi ;
Xie, Linghai ;
Zhang, Hua ;
Huang, Wei ;
Yu, Ting .
ADVANCED MATERIALS, 2014, 26 (35) :6186-+
[2]  
[Anonymous], 2012, ANGEW CHEM
[3]   Graphene-like nano-sheets for surface acoustic wave gas sensor applications [J].
Arsat, R. ;
Breedon, M. ;
Shafiei, M. ;
Spizziri, P. G. ;
Gilje, S. ;
Kaner, R. B. ;
Kalantar-Zadeh, K. ;
Wlodarski, W. .
CHEMICAL PHYSICS LETTERS, 2009, 467 (4-6) :344-347
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   Activating basal-plane catalytic activity of two-dimensional MoS2 monolayer with remote hydrogen plasma [J].
Cheng, Chia-Chin ;
Lu, Ang-Yu ;
Tseng, Chien-Chih ;
Yang, Xiulin ;
Hedhili, Mohamed Nejib ;
Chen, Min-Cheng ;
Wei, Kung-Hwa ;
Li, Lain-Jong .
NANO ENERGY, 2016, 30 :846-852
[6]   Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts [J].
Cheng, Fangyi ;
Chen, Jun .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (06) :2172-2192
[7]   Controlling the Active Sites of Sulfur-Doped Carbon Nanotube-Graphene Nanolobes for Highly Efficient Oxygen Evolution and Reduction Catalysis [J].
El-Sawy, Abdelhamid M. ;
Mosa, Islam M. ;
Su, Dong ;
Guild, Curtis J. ;
Khalid, Syed ;
Joesten, Raymond ;
Rusling, James F. ;
Suib, Steven L. .
ADVANCED ENERGY MATERIALS, 2016, 6 (05)
[8]   Two-Dimensional Fluorinated Graphene: Synthesis, Structures, Properties and Applications [J].
Feng, Wei ;
Long, Peng ;
Feng, Yiyu ;
Li, Yu .
ADVANCED SCIENCE, 2016, 3 (07)
[9]   Correlating Fe source with Fe-N-C active site construction: Guidance for rational design of high-performance ORR catalyst [J].
Gao, Liqin ;
Xiao, Meiling ;
Jin, Zhao ;
Liu, Changpeng ;
Zhu, Jianbing ;
Ge, Junjie ;
Xing, Wei .
JOURNAL OF ENERGY CHEMISTRY, 2018, 27 (06) :1668-1673
[10]   Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices [J].
Gao, Min-Rui ;
Xu, Yun-Fei ;
Jiang, Jun ;
Yu, Shu-Hong .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (07) :2986-3017