High-order filtered scheme for front propagation problems

被引:3
作者
Sahu, Smita [1 ,2 ]
机构
[1] Univ Roma La Sapienza, Dip Matemat, P Aldo Moro 5, I-00185 Rome, Italy
[2] Univ Durham, Math Sci, Durham DH1 3LE, England
来源
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY | 2016年 / 47卷 / 02期
基金
欧盟第七框架计划;
关键词
level set; front propagation; Hamilton-Jacobi equation; high-order schemes; viscosity solutions; HAMILTON-JACOBI EQUATIONS;
D O I
10.1007/s00574-016-0181-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we develop a specific application of the scheme proposed and analyzed in [1] to front propagation problems. The approach is based on the level-set method which leads in the isotropic case to a classical evolutive first order Hamilton- Jacobi equation.We will apply to this equation high-order "filtered schemes", for these schemes the strong monotonicity property will not be satisfied. However, a weak N"-monotonicity property applies and this is enough to obtain a convergence result and a precise error estimate. In the last section we will present several examples where we solve front propagation problems by filtered scheme in two and three dimensions showing the accuracy of our method.
引用
收藏
页码:727 / 744
页数:18
相关论文
共 19 条
  • [1] [Anonymous], 1996, CAMBRIDGE MONOGRAPHS
  • [2] [Anonymous], 2014, SEMILAGRANGIAN APPRO
  • [3] A BOUNDARY-VALUE PROBLEM FOR THE MINIMUM-TIME FUNCTION
    BARDI, M
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1989, 27 (04) : 776 - 785
  • [4] Bardi M., 1997, SYSTEMS CONTROL FDN
  • [5] An Efficient Data Structure and Accurate Scheme to Solve Front Propagation Problems
    Bokanowski, O.
    Cristiani, E.
    Zidani, H.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2010, 42 (02) : 251 - 273
  • [6] Bokanowski O., 2014, DCDS
  • [7] AN EFFICIENT FILTERED SCHEME FOR SOME FIRST ORDER TIME-DEPENDENT HAMILTON-JACOBI EQUATIONS
    Bokanowski, Olivier
    Falcone, Maurizio
    Sahu, Smita
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (01) : A171 - A195
  • [8] A discontinuous Galerkin scheme for front propagation with obstacles
    Bokanowski, Olivier
    Cheng, Yingda
    Shu, Chi-Wang
    [J]. NUMERISCHE MATHEMATIK, 2014, 126 (01) : 1 - 31
  • [9] An Adaptive Sparse Grid Semi-Lagrangian Scheme for First Order Hamilton-Jacobi Bellman Equations
    Bokanowski, Olivier
    Garcke, Jochen
    Griebel, Michael
    Klompmaker, Irene
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2013, 55 (03) : 575 - 605
  • [10] Crandall M. G., 1984, COMPUT METHODS APPL, V195, P1344