Leibniz rules and reality conditions

被引:13
|
作者
Fiore, G
Madore, J
机构
[1] Univ Naples Federico II, Fac Ingn, Dipartimento Matemat & Applicaz, I-80125 Naples, Italy
[2] Werner Heisenberg Inst, Max Planck Inst Phys, D-80805 Munich, Germany
[3] Univ Paris 11, Phys Theor & Hautes Energies Lab, F-91405 Orsay, France
来源
EUROPEAN PHYSICAL JOURNAL C | 2000年 / 17卷 / 02期
关键词
D O I
10.1007/s100520000470
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
An analysis is made of reality conditions within the context of non-commutative geometry. We show that if a covariant derivative satisfies a given left Leibniz rule then a right Leibniz rule fixes the reality condition for the covariant derivative itself. We show also that the map which determines the right Leibniz rule must satisfy the braid equation if the extension of the covariant derivative to tensor products is to satisfy the reality condition.
引用
收藏
页码:359 / 366
页数:8
相关论文
共 50 条
  • [41] Leibniz-Type Rules for Bilinear and Biparameter Fourier Multiplier Operators with Applications
    Yang, Jiexing
    Liu, Zongguang
    Wu, Xinfeng
    POTENTIAL ANALYSIS, 2021, 55 (02) : 189 - 209
  • [42] A nontrivial model of Weydert's SF3 minus the Leibniz rules
    Lenzi, G
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 1999, 6 (01) : 77 - 90
  • [43] LEIBNIZ RULES AND INTEGRAL ANALOGUES FOR FRACTIONAL DERIVATIVES VIA A NEW TRANSFORMATION FORMULA
    Fugere, J.
    Gaboury, S.
    Tremblay, R.
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 4 (02): : 72 - 82
  • [45] Leibniz-Type Rules for Bilinear Fourier Multiplier Operators with Besov Regularity
    Zongguang Liu
    Xinfeng Wu
    Jiexing Yang
    Results in Mathematics, 2022, 77
  • [46] Leibniz-Type Rules for Bilinear Fourier Multiplier Operators with Besov Regularity
    Liu, Zongguang
    Wu, Xinfeng
    Yang, Jiexing
    RESULTS IN MATHEMATICS, 2022, 77 (01)
  • [47] Erratum: Weighted Fractional Leibniz-type Rules for Bilinear Multiplier Operators
    Joshua Brummer
    Virginia Naibo
    Potential Analysis, 2024, 60 : 917 - 920
  • [48] Leibniz-Type Rules for Bilinear and Biparameter Fourier Multiplier Operators with Applications
    Jiexing Yang
    Zongguang Liu
    Xinfeng Wu
    Potential Analysis, 2021, 55 : 189 - 209
  • [49] On twisted reality conditions
    Brzezinski, Tomasz
    Dabrowski, Ludwik
    Sitarz, Andrzej
    LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (03) : 643 - 659
  • [50] On twisted reality conditions
    Tomasz Brzeziński
    Ludwik Dąbrowski
    Andrzej Sitarz
    Letters in Mathematical Physics, 2019, 109 : 643 - 659