Gene expression based inference of cancer drug sensitivity

被引:74
作者
Chawla, Smriti [1 ]
Rockstroh, Anja [2 ]
Lehman, Melanie [2 ,3 ]
Ratther, Ellca [2 ]
Jain, Atishay [4 ]
Anand, Anuneet [4 ]
Gupta, Apoorva [5 ]
Bhattacharya, Namrata [2 ,4 ]
Poonia, Sarita [1 ]
Rai, Priyadarshini [1 ]
Das, Nirjhar [6 ]
Majumdar, Angshul [4 ,7 ,8 ]
Jayadeva [6 ]
Ahuja, Gaurav [1 ]
Hollier, Brett G. [2 ]
Nelson, Colleen C. [2 ]
Sengupta, Debarka [1 ,4 ,7 ]
机构
[1] Indraprastha Inst Informat Technol Delhi IIIT Del, Dept Computat Biol, Phase 3, New Delhi 110020, India
[2] Queensland Univ Technol, Fac Hlth, Australian Prostate Canc Res Ctr Queensland, Ctr Genom & Personalised Hlth,Translat Res Inst, Brisbane, Qld, Australia
[3] Univ British Columbia, Vancouver Prostate Ctr, Dept Urol Sci, Vancouver, BC, Canada
[4] Indraprastha Inst Informat Technol Delhi IIIT Del, Dept Comp Sci & Engn, Phase 3, New Delhi 110020, India
[5] Delhi Technol Univ, Dept Biotechnol, Main Bawana Rd, Delhi 110042, India
[6] Indian Inst Technol Delhi, Dept Elect Engn, Delhi 110016, India
[7] Indraprastha Inst Informat Technol Delhi IIIT Del, Ctr Artificial Intelligence, Phase 3, New Delhi 110020, India
[8] Indraprastha Inst Informat Technol Delhi IIIT Del, Dept Elect & Commun Engn, Phase 3, New Delhi 110020, India
关键词
HETEROGENEITY; RESISTANCE;
D O I
10.1038/s41467-022-33291-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Inter and intra-tumoral heterogeneity are major stumbling blocks in the treatment of cancer and are responsible for imparting differential drug responses in cancer patients. Recently, the availability of high-throughput screening datasets has paved the way for machine learning based personalized therapy recommendations using the molecular profiles of cancer specimens. In this study, we introduce Precily, a predictive modeling approach to infer treatment response in cancers using gene expression data. In this context, we demonstrate the benefits of considering pathway activity estimates in tandem with drug descriptors as features. We apply Precily on single-cell and bulk RNA sequencing data associated with hundreds of cancer cell lines. We then assess the predictability of treatment outcomes using our in-house prostate cancer cell line and xenografts datasets exposed to differential treatment conditions. Further, we demonstrate the applicability of our approach on patient drug response data from The Cancer Genome Atlas and an independent clinical study describing the treatment journey of three melanoma patients. Our findings highlight the importance of chemo-transcriptomics approaches in cancer treatment selection. Predicting treatment response in cancer remains a highly complex task. Here, the authors develop Precily, a deep neural network framework to predict treatment response in cancer by considering gene expression, pathway activity estimates and drug features, and test this method in multiple datasets and preclinical models.
引用
收藏
页数:15
相关论文
共 66 条
[1]   Machine learning approaches to drug response prediction: challenges and recent progress [J].
Adam, George ;
Rampasek, Ladislav ;
Safikhani, Zhaleh ;
Smirnov, Petr ;
Haibe-Kains, Benjamin ;
Goldenberg, Anna .
NPJ PRECISION ONCOLOGY, 2020, 4 (01)
[2]   Drug response prediction by inferring pathway-response associations with kernelized Bayesian matrix factorization [J].
Ammad-ud-din, Muhammad ;
Khan, Suleiman A. ;
Malani, Disha ;
Murumagi, Astrid ;
Kallioniemi, Olli ;
Aittokallio, Tero ;
Kaski, Samuel .
BIOINFORMATICS, 2016, 32 (17) :455-463
[3]   HTSeq-a Python']Python framework to work with high-throughput sequencing data [J].
Anders, Simon ;
Pyl, Paul Theodor ;
Huber, Wolfgang .
BIOINFORMATICS, 2015, 31 (02) :166-169
[4]  
[Anonymous], KERAS TUNER HYPERPAR
[5]  
[Anonymous], 2014, PubChemPy: A way to interact with PubChem in Python
[6]  
Ballinger A, 2000, Expert Opin Pharmacother, V1, P841, DOI 10.1517/14656566.1.4.841
[7]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[8]  
Baudino Troy A, 2015, Curr Drug Discov Technol, V12, P3
[9]   Predicting and affecting response to cancer therapy based on pathway-level biomarkers [J].
Ben-Hamo, Rotem ;
Berger, Adi Jacob ;
Gavert, Nancy ;
Miller, Mendy ;
Pines, Guy ;
Oren, Roni ;
Pikarsky, Eli ;
Benes, Cyril H. ;
Neuman, Tzahi ;
Zwang, Yaara ;
Efroni, Sol ;
Getz, Gad ;
Straussman, Ravid .
NATURE COMMUNICATIONS, 2020, 11 (01)
[10]  
Broad Institute TCGA Genome Data Analysis Center, 2016, AN READ STAND TCGA B, DOI [DOI 10.7908/C11G0KM9, 10. 7908/C11G0KM9 Accessed on 6/22/17]