The Spectral Action and Cosmic Topology

被引:23
作者
Marcolli, Matilde [1 ]
Pierpaoli, Elena [2 ]
Teh, Kevin [1 ]
机构
[1] CALTECH, Dept Math, Pasadena, CA 91125 USA
[2] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA
关键词
POINCARE DODECAHEDRAL SPACE; DIRAC OPERATOR; NONCOMMUTATIVE GEOMETRY; SPHERICAL UNIVERSE; STANDARD MODEL; FLAT UNIVERSES; GRAVITY; PROBE; EIGENVALUES; INFLATION;
D O I
10.1007/s00220-011-1211-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The spectral action functional, considered as a model of gravity coupled to matter, provides, in its non-perturbative form, a slow-roll potential for inflation, whose form and corresponding slow-roll parameters can be sensitive to the underlying cosmic topology. We explicitly compute the non-perturbative spectral action for some of the main candidates for cosmic topologies, namely the quaternionic space, the Poincar, dodecahedral space, and the flat tori. We compute the corresponding slow-roll parameters and we check that the resulting inflation model behaves in the same way as for a simply-connected spherical topology in the case of the quaternionic space and the Poincar, homology sphere, while it behaves differently in the case of the flat tori. We add an appendix with a discussion of the case of lens spaces.
引用
收藏
页码:125 / 174
页数:50
相关论文
共 40 条
  • [1] Cosmic microwave background alignment in multi-connected universes
    Aurich, Ralf
    Lustig, Sven
    Steiner, Frank
    Then, Holger
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (07) : 1879 - 1894
  • [2] THE DIRAC OPERATOR ON HOMOGENEOUS SPACES AND ITS SPECTRUM ON 3-DIMENSIONAL LENS SPACES
    BAR, C
    [J]. ARCHIV DER MATHEMATIK, 1992, 59 (01) : 65 - 79
  • [3] The Dirac operator on space forms of positive curvature
    Bar, C
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1996, 48 (01) : 69 - 83
  • [4] BAR C, 2000, GLOBAL ANAL HARMONIC, P17
  • [5] A new analysis of the Poincare dodecahedral space model
    Caillerie, S.
    Lachieze-Rey, M.
    Luminet, J. -P.
    Lehoucq, R.
    Riazuelo, A.
    Weeks, J.
    [J]. ASTRONOMY & ASTROPHYSICS, 2007, 476 (02) : 691 - 696
  • [6] The spectral action principle
    Chamseddine, AH
    Connes, A
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 186 (03) : 731 - 750
  • [7] Chamseddine AH, 2007, ADV THEOR MATH PHYS, V11, P991
  • [8] The Uncanny Precision of the Spectral Action
    Chamseddine, Ali H.
    Connes, Alain
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 293 (03) : 867 - 897
  • [9] Gravity coupled with matter and the foundation of non-commutative geometry
    Connes, A
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 182 (01) : 155 - 176
  • [10] Constraining the topology of the Universe
    Cornish, NJ
    Spergel, DN
    Starkman, GD
    Komatsu, E
    [J]. PHYSICAL REVIEW LETTERS, 2004, 92 (20) : 201302 - 1