Continuous-wave frequency upconversion with a molecular optomechanical nanocavity

被引:96
作者
Chen, Wen [1 ]
Roelli, Philippe [1 ,6 ]
Hu, Huatian [2 ]
Verlekar, Sachin [1 ]
Amirtharaj, Sakthi Priya [1 ]
Barreda, Angela, I [3 ]
Kippenberg, Tobias J. [1 ]
Kovylina, Miroslavna [4 ]
Verhagen, Ewold [5 ]
Martinez, Alejandro [4 ]
Galland, Christophe [1 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Inst Phys, CH-1015 Lausanne, Switzerland
[2] Wuhan Inst Technol, Hubei Key Lab Opt Informat & Pattern Recognit, Wuhan 430205, Peoples R China
[3] Friedrich Schiller Univ Jena, Abbe Ctr Photon, Inst Appl Phys, D-07745 Jena, Germany
[4] Univ Politecn Valencia, Nanophoton Technol Ctr, Valencia 46022, Spain
[5] AMOLF, Ctr Nanophoton, NL-1098 XG Amsterdam, Netherlands
[6] CIC NanoGUNE BRTA, Nanoopt Grp, E-20018 San Sebastian, Spain
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
ENHANCED RAMAN-SCATTERING; SPECTROSCOPY; RADIATION; MICROWAVE; ARRAYS;
D O I
10.1126/science.abk3106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Coherent upconversion of terahertz and mid-infrared signals into visible light opens new horizons for spectroscopy, imaging, and sensing but represents a challenge for conventional nonlinear optics. Here, we used a plasmonic nanocavity hosting a few hundred molecules to demonstrate optomechanical transduction of submicrowatt continuous-wave signals from the mid-infrared (32 terahertz) onto the visible domain at ambient conditions. The incoming field resonantly drives a collective molecular vibration, which imprints a coherent modulation on a visible pump laser and results in upconverted Raman sidebands with subnatural linewidth. Our dual-band nanocavity offers an estimated 13 orders of magnitude enhancement in upconversion efficiency per molecule. Our results demonstrate that molecular cavity optomechanics is a flexible paradigm for frequency conversion leveraging tailorable molecular and plasmonic properties.
引用
收藏
页码:1264 / +
页数:44
相关论文
共 79 条
[71]   Preparation and Decay of a Single Quantum of Vibration at Ambient Conditions [J].
Velez, Santiago Tarrago ;
Seibold, Kilian ;
Kipfer, Nils ;
Anderson, Mitchell D. ;
Sudhir, Vivishek ;
Galland, Christophe .
PHYSICAL REVIEW X, 2019, 9 (04)
[72]  
Vivien L, 2020, SMART PHOTONIC OPTOE, V11284
[73]   Plasmonic nanoshell arrays combine surface-enhanced vibrational spectroscopies on a single substrate [J].
Wang, Hui ;
Kundu, Janardan ;
Halas, Naomi J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (47) :9040-9044
[74]   Detecting mid-infrared light by molecular frequency upconversion in dual-wavelength nanoantennas [J].
Xomalis, Angelos ;
Zheng, Xuezhi ;
Chikkaraddy, Rohit ;
Koczor-Benda, Zsuzsanna ;
Miele, Ermanno ;
Rosta, Edina ;
Vandenbosch, Guy A. E. ;
Martinez, Alejandro ;
Baumberg, Jeremy J. .
SCIENCE, 2021, 374 (6572) :1268-+
[75]  
Yampolsky S, 2014, NAT PHOTONICS, V8, P650, DOI [10.1038/NPHOTON.2014.143, 10.1038/nphoton.2014.143]
[76]   Near-to-Far Field Transformations for Radiative and Guided Waves [J].
Yang, Jianji ;
Hugonin, Jean-Paul ;
Lalanne, Philippe .
ACS PHOTONICS, 2016, 3 (03) :395-402
[77]   Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators [J].
Yao, Yu ;
Shankar, Raji ;
Kats, Mikhail A. ;
Song, Yi ;
Kong, Jing ;
Loncar, Marko ;
Capasso, Federico .
NANO LETTERS, 2014, 14 (11) :6526-6532
[78]   Visible-to-Telecom Quantum Frequency Conversion of Light from a Single Quantum Emitter [J].
Zaske, Sebastian ;
Lenhard, Andreas ;
Kessler, Christian A. ;
Kettler, Jan ;
Hepp, Christian ;
Arend, Carsten ;
Albrecht, Roland ;
Schulz, Wolfgang-Michael ;
Jetter, Michael ;
Michler, Peter ;
Becher, Christoph .
PHYSICAL REVIEW LETTERS, 2012, 109 (14)
[79]   Optomechanical Collective Effects in Surface-Enhanced Raman Scattering from Many Molecules [J].
Zhang, Yuan ;
Aizpurua, Javier ;
Esteban, Ruben .
ACS PHOTONICS, 2020, 7 (07) :1676-1688