Continuous-wave frequency upconversion with a molecular optomechanical nanocavity

被引:96
作者
Chen, Wen [1 ]
Roelli, Philippe [1 ,6 ]
Hu, Huatian [2 ]
Verlekar, Sachin [1 ]
Amirtharaj, Sakthi Priya [1 ]
Barreda, Angela, I [3 ]
Kippenberg, Tobias J. [1 ]
Kovylina, Miroslavna [4 ]
Verhagen, Ewold [5 ]
Martinez, Alejandro [4 ]
Galland, Christophe [1 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Inst Phys, CH-1015 Lausanne, Switzerland
[2] Wuhan Inst Technol, Hubei Key Lab Opt Informat & Pattern Recognit, Wuhan 430205, Peoples R China
[3] Friedrich Schiller Univ Jena, Abbe Ctr Photon, Inst Appl Phys, D-07745 Jena, Germany
[4] Univ Politecn Valencia, Nanophoton Technol Ctr, Valencia 46022, Spain
[5] AMOLF, Ctr Nanophoton, NL-1098 XG Amsterdam, Netherlands
[6] CIC NanoGUNE BRTA, Nanoopt Grp, E-20018 San Sebastian, Spain
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
ENHANCED RAMAN-SCATTERING; SPECTROSCOPY; RADIATION; MICROWAVE; ARRAYS;
D O I
10.1126/science.abk3106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Coherent upconversion of terahertz and mid-infrared signals into visible light opens new horizons for spectroscopy, imaging, and sensing but represents a challenge for conventional nonlinear optics. Here, we used a plasmonic nanocavity hosting a few hundred molecules to demonstrate optomechanical transduction of submicrowatt continuous-wave signals from the mid-infrared (32 terahertz) onto the visible domain at ambient conditions. The incoming field resonantly drives a collective molecular vibration, which imprints a coherent modulation on a visible pump laser and results in upconverted Raman sidebands with subnatural linewidth. Our dual-band nanocavity offers an estimated 13 orders of magnitude enhancement in upconversion efficiency per molecule. Our results demonstrate that molecular cavity optomechanics is a flexible paradigm for frequency conversion leveraging tailorable molecular and plasmonic properties.
引用
收藏
页码:1264 / +
页数:44
相关论文
共 79 条
[21]   Nanostructured metals for light-based technologies [J].
Gordon, Reuven .
NANOTECHNOLOGY, 2019, 30 (21)
[22]   Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients [J].
Green, Martin A. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2008, 92 (11) :1305-1310
[23]   Sensitivity-Bandwidth Limit in a Multimode Optoelectromechanical Transducer [J].
Haghighi, I. Moaddel ;
Malossi, N. ;
Natali, R. ;
Di Giuseppe, G. ;
Vitali, D. .
PHYSICAL REVIEW APPLIED, 2018, 9 (03)
[24]   Emission of electromagnetic radiation by coherent vibrational waves in stimulated Raman scattering [J].
Hasselbeck, MP ;
Schlie, LA ;
Stalnaker, D .
APPLIED PHYSICS LETTERS, 2004, 85 (02) :173-175
[25]   Harnessing electro-optic correlations in an efficient mechanical converter [J].
Higginbotham, A. P. ;
Burns, P. S. ;
Urmey, M. D. ;
Peterson, R. W. ;
Kampel, N. S. ;
Brubaker, B. M. ;
Smith, G. ;
Lehnert, K. W. ;
Regal, C. A. .
NATURE PHYSICS, 2018, 14 (10) :1038-+
[26]   Plasmonic Enhancement of Infrared Vibrational Signals: Nanoslits versus Nanorods [J].
Huck, Christian ;
Vogt, Jochen ;
Sendner, Michael ;
Hengstler, Daniel ;
Neubrech, Frank ;
Pucci, Annemarie .
ACS PHOTONICS, 2015, 2 (10) :1489-1497
[27]   OPTICAL CONSTANTS OF NOBLE METALS [J].
JOHNSON, PB ;
CHRISTY, RW .
PHYSICAL REVIEW B, 1972, 6 (12) :4370-4379
[28]   Mid-infrared upconversion based hyperspectral imaging [J].
Junaid, Saher ;
Tomko, Jan ;
Semtsiv, Mykhaylo P. ;
Kischkat, Jan ;
Masselink, W. Ted ;
Pedersen, Christian ;
Tidemand-Lichtenberg, Peter .
OPTICS EXPRESS, 2018, 26 (03) :2203-2211
[29]   Infrared spectroscopy with visible light [J].
Kalashnikov, Dmitry A. ;
Paterova, Anna V. ;
Kulik, Sergei P. ;
Krivitsky, Leonid A. .
NATURE PHOTONICS, 2016, 10 (02) :98-+
[30]   Detection of mid-IR radiation by sum frequency generation for free space optical communication [J].
Karstad, K ;
Stefanov, A ;
Wegmuller, M ;
Zbinden, H ;
Gisin, N ;
Aellen, T ;
Beck, M ;
Faist, J .
OPTICS AND LASERS IN ENGINEERING, 2005, 43 (3-5) :537-544