Continuous-wave frequency upconversion with a molecular optomechanical nanocavity

被引:96
作者
Chen, Wen [1 ]
Roelli, Philippe [1 ,6 ]
Hu, Huatian [2 ]
Verlekar, Sachin [1 ]
Amirtharaj, Sakthi Priya [1 ]
Barreda, Angela, I [3 ]
Kippenberg, Tobias J. [1 ]
Kovylina, Miroslavna [4 ]
Verhagen, Ewold [5 ]
Martinez, Alejandro [4 ]
Galland, Christophe [1 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Inst Phys, CH-1015 Lausanne, Switzerland
[2] Wuhan Inst Technol, Hubei Key Lab Opt Informat & Pattern Recognit, Wuhan 430205, Peoples R China
[3] Friedrich Schiller Univ Jena, Abbe Ctr Photon, Inst Appl Phys, D-07745 Jena, Germany
[4] Univ Politecn Valencia, Nanophoton Technol Ctr, Valencia 46022, Spain
[5] AMOLF, Ctr Nanophoton, NL-1098 XG Amsterdam, Netherlands
[6] CIC NanoGUNE BRTA, Nanoopt Grp, E-20018 San Sebastian, Spain
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
ENHANCED RAMAN-SCATTERING; SPECTROSCOPY; RADIATION; MICROWAVE; ARRAYS;
D O I
10.1126/science.abk3106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Coherent upconversion of terahertz and mid-infrared signals into visible light opens new horizons for spectroscopy, imaging, and sensing but represents a challenge for conventional nonlinear optics. Here, we used a plasmonic nanocavity hosting a few hundred molecules to demonstrate optomechanical transduction of submicrowatt continuous-wave signals from the mid-infrared (32 terahertz) onto the visible domain at ambient conditions. The incoming field resonantly drives a collective molecular vibration, which imprints a coherent modulation on a visible pump laser and results in upconverted Raman sidebands with subnatural linewidth. Our dual-band nanocavity offers an estimated 13 orders of magnitude enhancement in upconversion efficiency per molecule. Our results demonstrate that molecular cavity optomechanics is a flexible paradigm for frequency conversion leveraging tailorable molecular and plasmonic properties.
引用
收藏
页码:1264 / +
页数:44
相关论文
共 79 条
[1]   Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities [J].
Ahmed, Aqeel ;
Banjac, Karla ;
Verlekar, Sachin S. ;
Cometto, Fernando P. ;
Lingenfelder, Magali ;
Galland, Christophe .
ACS PHOTONICS, 2021, 8 (06) :1863-1872
[2]  
Andrews RW, 2014, NAT PHYS, V10, P321, DOI [10.1038/NPHYS2911, 10.1038/nphys2911]
[3]   Temperature Dependence of the Homogeneous Broadening of Resonant Raman Peaks Measured by Single-Molecule Surface-Enhanced Raman Spectroscopy [J].
Artur, Camille ;
Le Ru, Eric C. ;
Etchegoin, Pablo G. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (23) :3002-3005
[4]   Determination of beam width and quality for pulsed lasers using the knife-edge method [J].
Bachmann, L ;
Zezell, DM ;
Maldonado, EP .
INSTRUMENTATION SCIENCE & TECHNOLOGY, 2003, 31 (01) :47-52
[5]   Optical detection of radio waves through a nanomechanical transducer [J].
Bagci, T. ;
Simonsen, A. ;
Schmid, S. ;
Villanueva, L. G. ;
Zeuthen, E. ;
Appel, J. ;
Taylor, J. M. ;
Sorensen, A. ;
Usami, K. ;
Schliesser, A. ;
Polzik, E. S. .
NATURE, 2014, 507 (7490) :81-85
[6]   Bond-selective imaging by optically sensing the mid-infrared photothermal effect [J].
Bai, Yeran ;
Yin, Jiaze ;
Cheng, Ji-Xin .
SCIENCE ADVANCES, 2021, 7 (20)
[7]  
Balram KC, 2016, NAT PHOTONICS, V10, P346, DOI [10.1038/nphoton.2016.46, 10.1038/NPHOTON.2016.46]
[8]   Parametric upconversion imaging and its applications [J].
Barh, Ajanta ;
Rodrigo, Peter John ;
Meng, Lichun ;
Pedersen, Christian ;
Tidemand-Lichtenberg, Peter .
ADVANCES IN OPTICS AND PHOTONICS, 2019, 11 (04) :952-1019
[9]   Extreme nanophotonics from ultrathin metallic gaps [J].
Baumberg, Jeremy J. ;
Aizpurua, Javier ;
Mikkelsen, Maiken H. ;
Smith, David R. .
NATURE MATERIALS, 2019, 18 (07) :668-678
[10]   Optomechanical terahertz detection with single meta-atom resonator [J].
Belacel, Cherif ;
Todorov, Yanko ;
Barbieri, Stefano ;
Gacemi, Djamal ;
Favero, Ivan ;
Sirtori, Carlo .
NATURE COMMUNICATIONS, 2017, 8