Identifying deformation mechanisms in molecular dynamics simulations of laser shocked matter

被引:2
作者
White, T. G. [1 ,2 ]
Tikku, A. [2 ]
Silva, M. F. Alves [2 ]
Gregori, G. [1 ]
Higginbotham, A. [3 ]
Eakins, D. E. [2 ]
机构
[1] Univ Oxford, Dept Phys, Parks Rd, Oxford OX1 3PU, England
[2] Imperial Coll London, Inst Shock Phys, London SW7 2AZ, England
[3] Univ York, York Plasma Inst, York YO10 5DD, N Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Structure identification; Shock waves; Molecular dynamics; Twinning; Plasticity; METALS; NUCLEATION; PRESSURE;
D O I
10.1016/j.jcp.2017.08.040
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we demonstrate a new post-processing technique that allows straightforward identification of deformation mechanisms in molecular dynamics simulations. We utilise reciprocal space methods by calculating a per-atom structure factor (PASF) to visualise changes in volume, orientation and structure, thus allowing unambiguous discrimination between key deformation/relaxation mechanisms such as uniaxial strain, twinning and structural phase transformations. The full 3-D PASF is reduced to a 2-D representation by taking only those points which lie on the surface of an ellipsoid passing through the nearest reciprocal lattice points. Projecting this 2-D representation onto the set of spherical harmonics allows for a numerical characterisation of the system state that easily captures various plastic deformation mechanisms that have been historically difficult to identify. The technique is used to successfully classify high temperature twinning rotations in shock compressed tantalum and to identify the alpha to omega phase transition in group-IV hcp metals. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:16 / 24
页数:9
相关论文
共 39 条
  • [1] Applications of local crystal structure measures in experiment and simulation
    Ackland, GJ
    Jones, AP
    [J]. PHYSICAL REVIEW B, 2006, 73 (05):
  • [2] Shock deformation of face-centred-cubic metals on subnanosecond timescales
    Bringa, M.
    Rosolankova, K.
    Rudd, R. E.
    Remington, B. A.
    Wark, J. S.
    Duchaineau, M.
    Kalantar, H.
    Hawreliak, J.
    Belak, J.
    [J]. NATURE MATERIALS, 2006, 5 (10) : 805 - 809
  • [3] DEFORMATION TWINNING
    CHRISTIAN, JW
    MAHAJAN, S
    [J]. PROGRESS IN MATERIALS SCIENCE, 1995, 39 (1-2) : 1 - 157
  • [4] Extended Finnis-Sinclair potential for bcc and fcc metals and alloys
    Dai, X. D.
    Kong, Y.
    Li, J. H.
    Liu, B. X.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (19) : 4527 - 4542
  • [5] SEMIEMPIRICAL, QUANTUM-MECHANICAL CALCULATION OF HYDROGEN EMBRITTLEMENT IN METALS
    DAW, MS
    BASKES, MI
    [J]. PHYSICAL REVIEW LETTERS, 1983, 50 (17) : 1285 - 1288
  • [6] Strain rate and orientation dependencies of the strength of single crystalline copper under compression
    Dupont, Virginie
    Germann, Timothy C.
    [J]. PHYSICAL REVIEW B, 2012, 86 (13):
  • [7] A SIMPLE EMPIRICAL N-BODY POTENTIAL FOR TRANSITION-METALS
    FINNIS, MW
    SINCLAIR, JE
    [J]. PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1984, 50 (01): : 45 - 55
  • [8] Fletcher LB, 2015, NAT PHOTONICS, V9, P274, DOI [10.1038/nphoton.2015.41, 10.1038/NPHOTON.2015.41]
  • [9] Classical potential describes martensitic phase transformations between the α, β, and ω titanium phases
    Hennig, R. G.
    Lenosky, T. J.
    Trinkle, D. R.
    Rudin, S. P.
    Wilkins, J. W.
    [J]. PHYSICAL REVIEW B, 2008, 78 (05)
  • [10] Inelastic response of silicon to shock compression
    Higginbotham, A.
    Stubley, P. G.
    Comley, A. J.
    Eggert, J. H.
    Foster, J. M.
    Kalantar, D. H.
    McGonegle, D.
    Patel, S.
    Peacock, L. J.
    Rothman, S. D.
    Smith, R. F.
    Suggit, M. J.
    Wark, J. S.
    [J]. SCIENTIFIC REPORTS, 2016, 6