Factors of Sums and Alternating Sums of Products of q-binomial Coefficients and Powers of q-integers

被引:10
作者
Guo, Victor J. W. [1 ]
Wang, Su-Dan [2 ]
机构
[1] Huaiyin Normal Univ, Sch Math Sci, Huaian 223300, Jiangsu, Peoples R China
[2] East China Normal Univ, Sch Math Sci, Shanghai 200062, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2019年 / 23卷 / 01期
基金
中国国家自然科学基金;
关键词
q-binomial coefficients; q-ballot numbers; q-Catalan numbers; q-super Catalan numbers; cyclotomic polynomial; Q-ANALOGS; CONGRUENCES;
D O I
10.11650/tjm/180601
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that, for all positive integers n(1), ..., n(m), n(m+1) = n(1), and non-negative integers j and r with j <= m, the following two expressions 1/[n(1) + n(m) + 1] [(n1 + nm)(n1)](-)(1) Sigma(n1)(k=0)q(j(k2 + k)-(2r + 1)k)[2k + 1](2r+1)Pi(m)(i=1)[(ni + ni+1+1)(ni-k)], 1/[n(1) + n(m) + 1] [(n1 + nm)(n1)](-)(1 )Sigma(n1)(k=0) (-1)k q((2k) + j(k2 + k) -2rk)[2k +1](2r + 1)Pi(m)(i=1)[(ni + ni+1+1)(ni-k)], are Laurent polynomials in q with integer coefficients, where [n] = 1 + q + ... + q(n-1) and [(n)(k)] = Pi(k)(i=1) (1 - q(n-i+1))/(1-q(i)). This gives a q-analogue of some divisibility results of sums and alternating sums involving binomial coefficients and powers of integers obtained by Guo and Zeng. We also confirm some related conjectures of Guo and Zeng by establishing their q-analogues. Several conjectural congruences for sums involving products of q-ballot numbers ([(2n)(n-k)] - [(2n)(n - k - 1)]) are proposed in the last section of this paper.
引用
收藏
页码:11 / 27
页数:17
相关论文
共 18 条