A generalized Lyapunov-type inequality in the frame of conformable derivatives

被引:66
作者
Abdeljawad, Thabet [1 ]
Alzabut, Jehad [1 ]
Jarad, Fahd [2 ]
机构
[1] Prince Sultan Univ, Dept Math & Gen Sci, POB 66833, Riyadh, Saudi Arabia
[2] Cankaya Univ, Dept Math & Comp Sci, TR-06790 Ankara, Turkey
关键词
Lyapunov inequality; conformable derivative; Green's function; boundary value problem; Sturm-Liouville eigenvalue problem;
D O I
10.1186/s13662-017-1383-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a generalized Lyapunov-type inequality for a conformable boundary value problem (BVP) of order alpha is an element of (1, 2]. Indeed, it is shown that if the boundary value problem (T(alpha)(c)x)(t) + r(t) x(t) = 0, t is an element of (c, d), x(c) = x(d) = 0 has a nontrivial solution, where r is a real-valued continuous function on [c, d], then integral(d)(c) vertical bar r(t)vertical bar dt > alpha(alpha)/(alpha - 1)(alpha-1) (d - c)(a-1). (1) Moreover, a Lyapunov type inequality of the form integral(d)(c)vertical bar r(t)vertical bar dt > 3 alpha - 1/(d - c)(2 alpha-1) (3 alpha - 1/2 alpha - 1)(2 alpha-1/a), 1/2 < alpha <= 1, (2) is obtained for a sequential conformable BVP. Some examples are given and an application to conformable Sturm-Liouville eigenvalue problem is analyzed.
引用
收藏
页数:10
相关论文
共 19 条
[1]  
Abdeljawad T., 2015, J SEMIGROUP THEORY A, V2015, P7
[2]   A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel [J].
Abdeljawad, Thabet .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
[3]   On conformable fractional calculus [J].
Abdeljawad, Thabet .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 :57-66
[4]  
Abu Hammad M., 2014, Int. J. Differ. Equ. Appl., V13, P177
[5]   Lyapunov type inequalities for even order differential equations with mixed nonlinearities [J].
Agarwal, Ravi P. ;
Ozbekler, Abdullah .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
[6]  
Anderson DR, 2015, Adv Dyn Syst Appl, V10, P109, DOI DOI 10.13140/RG.2.1.1744.9444
[7]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[8]   A generalized Lyapunov's inequality for a fractional boundary value problem [J].
Chidouh, Amar ;
Torres, Delfim F. M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 312 :192-197
[9]  
Feckan . M, 2014, ELECTRON J QUAL THEO, V2014
[10]   Minimization problem related to a Lyapunov inequality [J].
Hashizume, Masato .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 432 (01) :517-530