DELETING OR ADDING ARROWS OF A BOUND QUIVER ALGEBRA AND HOCHSCHILD (CO)HOMOLOGY

被引:6
作者
Cibils, Claude [1 ]
Lanzilotta, Marcelo [2 ]
Marcos, Eduardo N. [3 ]
Solotar, Andrea [4 ,5 ]
机构
[1] Univ Montpellier, CNRS, Inst Montpellierain Alexander Grothendieck, Montpellier, France
[2] Univ Republ, Fac Ingn, Inst Matemat & Estadist Rafael Laguardia, Republica, Uruguay
[3] Univ Sao Paulo, IME, Dept Matemat, Sao Paulo, Brazil
[4] Univ Buenos Aires, CONICET, IMAS, Buenos Aires, DF, Argentina
[5] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Buenos Aires, DF, Argentina
基金
巴西圣保罗研究基金会;
关键词
Hochschild; cohomology; homology; relative; quiver; arrow; RELATIVE HOMOLOGY; COHOMOLOGY; INVARIANCE;
D O I
10.1090/proc/14936
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe how the Hochschild (co)homology of a bound quiver algebra changes when deleting or adding arrows to the quiver. The main tools are relative Hochschild (co)homology, the Jacobi-Zariski long exact sequence obtained by A. Kaygun, and a length one relative projective resolution of tensor algebras.
引用
收藏
页码:2421 / 2432
页数:12
相关论文
共 35 条