Mass conserving Allen-Cahn equation and volume preserving mean curvature flow

被引:68
作者
Chen, Xinfu [1 ]
Hilhorst, D. [2 ,3 ]
Logak, E. [4 ,5 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[2] CNRS, Lab Math Anal Numer & EDP, UMR 8628, F-91405 Orsay, France
[3] Univ Paris 11, F-91405 Orsay, France
[4] Univ Cergy Pontoise, CNRS, UMR 8088, F-95302 Cergy Pontoise, France
[5] Univ Cergy Pontoise, Dept Math, F-95302 Cergy Pontoise, France
基金
美国国家科学基金会;
关键词
PHASE-FIELD-EQUATIONS; HILLIARD; MOTION; PROPAGATION; CONVERGENCE; INTERFACES; SPECTRUM; LIMIT;
D O I
10.4171/IFB/244
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a mass conserving Allen-Cahn equation u(t) = Delta u + epsilon(-2)(f (u) - epsilon lambda(t)) in a bounded domain with no flux boundary condition, where epsilon lambda(t) is the average of f(u(., t)) and -f is the derivative of a double equal well potential. Given a smooth hypersurface gamma(0) contained in the domain, we show that the solution u(epsilon) with appropriate initial data tends, as epsilon (sic) 0, to a limit which takes only two values, with the jump occurring at the hypersurface obtained from the volume preserving mean curvature flow starting from gamma(0).
引用
收藏
页码:527 / 549
页数:23
相关论文
共 22 条
[1]   THE SPECTRUM OF THE CAHN-HILLIARD OPERATOR FOR GENERIC INTERFACE IN HIGHER SPACE DIMENSIONS [J].
ALIKAKOS, ND ;
FUSCO, G .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1993, 42 (02) :637-674
[2]   CONVERGENCE OF THE CAHN-HILLIARD EQUATION TO THE HELE-SHAW MODEL [J].
ALIKAKOS, ND ;
BATES, PW ;
CHEN, XF .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 128 (02) :165-205
[3]   FRONT PROPAGATION AND PHASE FIELD-THEORY [J].
BARLES, G ;
SONER, HM ;
SOUGANIDIS, PE .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (02) :439-469
[4]   SPECTRAL COMPARISON PRINCIPLES FOR THE CAHN-HILLIARD AND PHASE-FIELD EQUATIONS, AND TIME SCALES FOR COARSENING [J].
BATES, PW ;
FIFE, PC .
PHYSICA D-NONLINEAR PHENOMENA, 1990, 43 (2-3) :335-348
[5]   Volume-preserving mean curvature flow as a limit of a nonlocal Ginzburg-Landau equation [J].
Bronsard, L ;
Stoth, B .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (04) :769-807
[6]   Convergence of the phase field model to its sharp interface limits [J].
Caginalp, G ;
Chen, XF .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 1998, 9 :417-445
[7]  
Chen X., 2006, DISCRETE CONTIN DYNA, V15, P1017
[8]   GENERATION AND PROPAGATION OF INTERFACES FOR REACTION DIFFUSION-EQUATIONS [J].
CHEN, XF .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 96 (01) :116-141
[9]   SPECTRUM FOR THE ALLEN-CAHN, CAHN-HILLIARD, AND PHASE FIELD-EQUATIONS FOR GENERIC INTERFACES [J].
CHEN, XF .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1994, 19 (7-8) :1371-1395
[10]   DEVELOPMENT OF INTERFACES IN RN [J].
DEMOTTONI, P ;
SCHATZMAN, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 116 :207-220