Parametric duality and kernelization: Lower bounds and upper bounds on kernel size

被引:0
作者
Chen, JN [1 ]
Fernau, H
Kanj, IA
Xia, G
机构
[1] Texas A&M Univ, Dept Comp Sci, College Stn, TX 77843 USA
[2] Univ Newcastle, Sch Elect Engn & Comp Sci, Newcastle, NSW 2308, Australia
[3] Univ Tubingen, Wilhelm Schickard Inst Informat, D-72076 Tubingen, Germany
[4] Depaul Univ, Sch Comp Sci Telecomm & Informat Sci, Chicago, IL 60604 USA
来源
STACS 2005, PROCEEDINGS | 2005年 / 3404卷
关键词
kernelization; parameterized complexity;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We develop new techniques to derive lower bounds on the kernel size for certain parameterized problems. For example, we show that unless P = NP, PLANAR VERTEX COVER does not have a problem kernel of size smaller than 4k/3, and PLANAR INDEPENDENT SET and PLANAR DOMINATING SET do not have kernels of size smaller than 2k. We derive an upper bound of 67k on the problem kernel for PLANAR DOMINATING SET improving the previous 335k upper bound by Alber et al.
引用
收藏
页码:269 / 280
页数:12
相关论文
共 15 条