Porous α-Fe2O3 nanoparticles encapsulated within reduced graphene oxide as superior anode for lithium-ion battery

被引:36
作者
Zhang, Xiaoyan [1 ]
Li, Shengyuan [1 ]
El-Khodary, Sherif A. [2 ]
Zou, Bobo [1 ]
Yang, Shiliu [2 ]
Ng, Dickon H. L. [3 ,4 ]
Liu, Xianhu [4 ]
Lian, Jiabiao [1 ,2 ]
Li, Huaming [1 ,2 ]
机构
[1] Jiangsu Univ, Sch Chem & Chem Engn, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Jiangsu Univ, Inst Energy Res, Zhenjiang 212013, Jiangsu, Peoples R China
[3] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China
[4] Zhengzhou Univ, Minist Educ, Key Lab Mat Proc & Mold, Zhengzhou 450002, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
lithium-ion batteries; anode; iron oxide; reduced graphene oxide; nanocomposite; porous structure; FE2O3; STORAGE; NANORODS; FABRICATION; COMPOSITES; FRAMEWORKS; ROUTE;
D O I
10.1088/1361-6528/ab667d
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A facile route for the controllable synthesis of porous alpha-Fe2O3 supported by three-dimensional reduced graphene oxide (rGO) is presented. The synergistic effect between alpha-Fe2O3 and rGO can increase the electrolyte infiltration and improve lithium ion diffusion as well. Moreover, the combination of rGO nanosheets can increase the available surface area to provide more active sites and prevent alpha-Fe2O3 nanoparticles from agglomeration during the cycling process to ensure its long-term cycle performance. Consequently, the alpha-Fe2O3/rGO nanocomposites exhibit higher reversible specific capacity (1418.2 mAh g(-1) at 0.1 A g(-1)), better rate capability (kept 804.5 mAh g(-1) at 5.0 A g(-1)) and cycling stability than the alpha-Fe2O3 nanoparticles. Owing to the superior electrochemical performance, the alpha-Fe2O3/rGO nanocomposites might have a great potential as anode for lithium-ion batteries.
引用
收藏
页数:7
相关论文
共 36 条
[31]   A simple route to preparing γ-Fe2O3/RGO composite electrode materials for lithium ion batteries [J].
Xu, Binghui ;
Guan, Xianggang ;
Zhang, Lian Ying ;
Liu, Xiaowei ;
Jiao, Zhengbo ;
Liu, Xuehua ;
Hu, Xiaoqi ;
Zhao, X. S. .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (09) :4048-4054
[32]   A facile route to achieve ultrafine Fe2O3 nanorods anchored on graphene oxide for application in lithium-ion battery [J].
Zhang, Guodong ;
Shi, Yanhong ;
Wang, Hongru ;
Jiang, Lingling ;
Yu, Xiaodan ;
Jing, Shengyu ;
Xing, Shuangxi ;
Tsiakaras, Panagiotis .
JOURNAL OF POWER SOURCES, 2019, 416 :118-124
[33]   Iron-Oxide- Based Advanced Anode Materials for LithiumIon Batteries [J].
Zhang, Lei ;
Wu, Hao Bin ;
Lou, Xiong Wen .
ADVANCED ENERGY MATERIALS, 2014, 4 (04)
[34]   3D Porous γ-Fe2O3@C Nanocomposite as High-Performance Anode Material of Na-Ion Batteries [J].
Zhang, Ning ;
Han, Xiaopeng ;
Liu, Yongchang ;
Hu, Xiaofei ;
Zhao, Qing ;
Chen, Jun .
ADVANCED ENERGY MATERIALS, 2015, 5 (05)
[35]   Ultrathin-Nanosheet-Induced Synthesis of 3D Transition Metal Oxides Networks for Lithium Ion Battery Anodes [J].
Zhu, Shan ;
Li, Jiajun ;
Deng, Xiaoyang ;
He, Chunnian ;
Liu, Enzuo ;
He, Fang ;
Shi, Chunsheng ;
Zhao, Naiqin .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (09)
[36]   Nanostructured Reduced Graphene Oxide/Fe2O3 Composite As a High-Performance Anode Material for Lithium Ion Batteries [J].
Zhu, Xianjun ;
Zhu, Yanwu ;
Murali, Shanthi ;
Stollers, Meryl D. ;
Ruoff, Rodney S. .
ACS NANO, 2011, 5 (04) :3333-3338