Adaptive Sliding Mode Disturbance Observer-Based Composite Control With Prescribed Performance of Space Manipulators for Target Capturing

被引:297
作者
Zhu, Yukai [1 ]
Qiao, Jianzhong [1 ]
Guo, Lei [1 ]
机构
[1] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptive sliding mode disturbance observer (ASMDO); composite control; prescribed performance; space manipulator; target capturing; ATTITUDE STABILIZATION; NONLINEAR-SYSTEMS; RIGID SPACECRAFT; TRACKING CONTROL; MOTION CONTROL; TIME; ROBOT; ACTUATOR; SENSOR;
D O I
10.1109/TIE.2018.2838065
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The requirements for the control performances of space manipulators, especially for the stability and accuracy of the attitude control systems of the base spacecrafts, are ever increasing during the space target capturing tasks. However, the system uncertainties caused by parameter variations will degrade the system performances severely. This paper investigates the precise and fast trajectory tracking control problem for the free-flying space manipulator, after capturing a space target with uncertain mass. To compensate the system uncertainty with complex and uncertain dynamics, a novel adaptive sliding mode disturbance observer (ASMDO) is proposed. Then, a composite controller with prescribed transient and steady-state performances is developed. It is proved that the estimation error of ASMDO can be stabilized in finite-time, though the bound of the derivative of system uncertainty is unknown. Meanwhile, the trajectory tracking error can also be stabilized in finite-time and has preassigned maximum overshoot and steady-state error. Finally, numerical simulations and experimental studies are presented to demonstrate the effectiveness of proposed methods.
引用
收藏
页码:1973 / 1983
页数:11
相关论文
共 45 条
[1]   Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems [J].
Bechlioulis, Charalampos P. ;
Rovithakis, George A. .
AUTOMATICA, 2009, 45 (02) :532-538
[2]   Trajectory tracking control using velocity observer and disturbances observer for uncertain robot manipulators without tachometers [J].
Bouakrif, Farah .
MECCANICA, 2017, 52 (4-5) :861-875
[3]   Nonlinear disturbance observer-enhanced dynamic inversion control of missiles [J].
Chen, WH .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2003, 26 (01) :161-166
[4]   A nonlinear disturbance observer for robotic manipulators [J].
Chen, WH ;
Ballance, DJ ;
Gawthrop, PJ ;
O'Reilly, J .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2000, 47 (04) :932-938
[5]   Non-singular terminal sliding mode control of rigid manipulators [J].
Feng, Y ;
Yu, XH ;
Man, ZH .
AUTOMATICA, 2002, 38 (12) :2159-2167
[6]   Design of an Integral Suboptimal Second-Order Sliding Mode Controller for the Robust Motion Control of Robot Manipulators [J].
Ferrara, Antonella ;
Incremona, Gian Paolo .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2015, 23 (06) :2316-2325
[7]   Finite-time trajectory tracking control in a task space of robotic manipulators [J].
Galicki, Miroslaw .
AUTOMATICA, 2016, 67 :165-170
[8]   Anti-disturbance control theory for systems with multiple disturbances: A survey [J].
Guo, Lei ;
Cao, Songyin .
ISA TRANSACTIONS, 2014, 53 (04) :846-849
[9]   Hierarchical anti-disturbance adaptive control for non-linear systems with composite disturbances and applications to missile systems [J].
Guo, Lei ;
Wen, Xin-Yu .
TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2011, 33 (08) :942-956
[10]   From PID to Active Disturbance Rejection Control [J].
Han, Jingqing .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2009, 56 (03) :900-906