Physics-informed neural networks for high-speed flows

被引:671
|
作者
Mao, Zhiping [1 ]
Jagtap, Ameya D. [1 ]
Karniadakis, George Em [1 ]
机构
[1] Brown Univ, Div Appl Math, 182 George St, Providence, RI 02912 USA
关键词
Euler equations; Machine learning; Neural networks; Conservation laws; Riemann problem; Hidden fluid mechanics; EULER EQUATIONS; FRAMEWORK; SYSTEMS;
D O I
10.1016/j.cma.2019.112789
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work we investigate the possibility of using physics-informed neural networks (PINNs) to approximate the Euler equations that model high-speed aerodynamic flows. In particular, we solve both the forward and inverse problems in onedimensional and two-dimensional domains. For the forward problem, we utilize the Euler equations and the initial/boundary conditions to formulate the loss function, and solve the one-dimensional Euler equations with smooth solutions and with solutions that have a contact discontinuity as well as a two-dimensional oblique shock wave problem. We demonstrate that we can capture the solutions with only a few scattered points clustered randomly around the discontinuities. For the inverse problem, motivated by mimicking the Schlieren photography experimental technique used traditionally in high-speed aerodynamics, we use the data on density gradient del rho(x, t), the pressure p(x * , t) at a specified point x = x* as well as the conservation laws to infer all states of interest (density, velocity and pressure fields). We present illustrative benchmark examples for both the problem with smooth solutions and Riemann problems (Sod and Lax problems) with PINNs, demonstrating that all inferred states are in good agreement with the reference solutions. Moreover, we show that the choice of the position of the point x* plays an important role in the learning process. In particular, for the problem with smooth solutions we can randomly choose the position of the point x* from the computational domain, while for the Sod or Lax problem, we have to choose the position of the point x* from the domain between the initial discontinuous point and the shock position of the final time. We also solve the inverse problem by combining the aforementioned data and the Euler equations in characteristic form, showing that the results obtained by using the Euler equations in characteristic form are better than that obtained by using the Euler equations in conservative form. Furthermore, we consider another type of inverse problem, specifically, we employ PINNs to learn the value of the parameter gamma in the equation of state for the parameterized two-dimensional oblique wave problem by using the given data of the density, velocity and the pressure, and we identify the parameter gamma accurately. Taken together, our results demonstrate that in the current form, where the conservation laws are imposed at random points, PINNs are not as accurate as traditional numerical methods for forward problems but they are superior for inverse problems that cannot even be solved with standard techniques. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Physics-informed neural networks for periodic flows
    Shah, Smruti
    Anand, N. K.
    PHYSICS OF FLUIDS, 2024, 36 (07)
  • [2] Physics-informed neural networks for inverse problems in supersonic flows
    Jagtap, Ameya D.
    Mao, Zhiping
    Adams, Nikolaus
    Karniadakis, George Em
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 466
  • [3] Physics-informed neural networks for learning fluid flows with symmetry
    Kim, Younghyeon
    Kwak, Hyungyeol
    Nam, Jaewook
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2023, 40 (09) : 2119 - 2127
  • [4] Physics-informed neural networks for learning fluid flows with symmetry
    Younghyeon Kim
    Hyungyeol Kwak
    Jaewook Nam
    Korean Journal of Chemical Engineering, 2023, 40 : 2119 - 2127
  • [5] Physics-informed neural networks for incompressible flows with moving boundaries
    Zhu, Yongzheng
    Kong, Weizhen
    Deng, Jian
    Bian, Xin
    PHYSICS OF FLUIDS, 2024, 36 (01)
  • [6] Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks
    Berrone, S.
    Canuto, C.
    Pintore, M.
    Sukumar, N.
    HELIYON, 2023, 9 (08)
  • [7] Studying turbulent flows with physics-informed neural networks and sparse data
    Hanrahan, S.
    Kozul, M.
    Sandberg, R. D.
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2023, 104
  • [8] Application of physics-informed neural networks for thin liquid film flows
    Han, Qixun
    Sun, Xianhu
    Zhang, Fan
    Shao, Sujuan
    Ma, Chicheng
    FLUID DYNAMICS RESEARCH, 2025, 57 (01)
  • [9] Physics-informed neural networks for modeling water flows in a river channel
    Nazari L.F.
    Camponogara E.
    Seman L.O.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (03): : 1001 - 1015
  • [10] Separable Physics-Informed Neural Networks
    Cho, Junwoo
    Nam, Seungtae
    Yang, Hyunmo
    Yun, Seok-Bae
    Hong, Youngjoon
    Park, Eunbyung
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,