Elucidating the Intercalation Pseudocapacitance Mechanism of MoS2-Carbon Monolayer Interoverlapped Superstructure: Toward High-Performance Sodium-Ion-Based Hybrid Supercapacitor

被引:167
作者
Wang, Rutao [1 ]
Wang, Shijie [1 ]
Peng, Xiang [2 ]
Zhang, Yabin [1 ]
Jin, Dongdong [1 ]
Chu, Paul K. [2 ]
Zhang, Li [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Mech & Automat Engn, Shatin, Hong Kong 999077, Peoples R China
[2] City Univ Hong Kong, Dept Phys & Mat Sci, Tat Chee Ave, Kowloon 999077, Hong Kong, Peoples R China
关键词
MoS2; nanocomposite; intercalation pseudocapacitance; sodium-ion storage; supercapacitor; LITHIUM STORAGE; ENERGY-STORAGE; HARD CARBON; MOS2; BATTERY; NANOSHEETS; ANODE; COMPOSITES; EVOLUTION; CAPACITOR;
D O I
10.1021/acsami.7b09813
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Two-dimensional (2D) layered materials have shown great promise for electrochemical energy storage applications. However, they are usually limited by the sluggish kinetics and poor cycling stability. Interface modification on 2D layered materials provides an effective way for increasing the active sites, improving the electronic conductivity, and enhancing the structure stability so that it can potentially solve the major issues on fabricating energy'storage devices with high performance. Herein, we synthesize a novel MoS2-catbon (MoS2-c) monolayet interoverlapped superstructure via a facile interface-modification route. This interlayer overlapped structure is demonstrated to have a wide sodiunriion intercalation/deintercalation voltage range of 0.4-3:0 V and the typical pseudocapacitive characteristics in fast kinetics, high reversibility, and robust structural Stability, thus displaying a large reversible capacity, a high rate capability, and an improved cyclability. A full, cell of sodium-ion hybrid supercapacitor based on this MoS2-C hybrid architecture can operate up to 3.8 V and deliver a high energy density of 111.4 Wh kg(-1) and a high power density exceeding 12 000 W kg(-1). Furthermore, a long cycle life of 10 000 cycles with over 77.3% of capacitance retention can be achieved.
引用
收藏
页码:32745 / 32755
页数:11
相关论文
共 63 条
[1]  
Acerce M, 2015, NAT NANOTECHNOL, V10, P313, DOI [10.1038/NNANO.2015.40, 10.1038/nnano.2015.40]
[2]   Research progress in Na-ion capacitors [J].
Aravindan, Vanchiappan ;
Ulaganathan, Mani ;
Madhavi, Srinivasan .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (20) :7538-7548
[3]   Insertion-Type Electrodes for Nonaqueous Li-Ion Capacitors [J].
Aravindan, Vanchiappan ;
Gnanaraj, Joe ;
Lee, Yun-Sung ;
Madhavi, Srinivasan .
CHEMICAL REVIEWS, 2014, 114 (23) :11619-11635
[4]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[5]  
Brezesinski T, 2010, NAT MATER, V9, P146, DOI [10.1038/NMAT2612, 10.1038/nmat2612]
[6]   Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries [J].
Chang, Kun ;
Chen, Weixiang ;
Ma, Lin ;
Li, Hui ;
Li, He ;
Huang, Feihe ;
Xu, Zhude ;
Zhang, Qingbo ;
Lee, Jim-Yang .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (17) :6251-6257
[7]   Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance [J].
Chao, Dongliang ;
Zhu, Changrong ;
Yang, Peihua ;
Xia, Xinhui ;
Liu, Jilei ;
Wang, Jin ;
Fan, Xiaofeng ;
Savilov, Serguei V. ;
Lin, Jianyi ;
Fan, Hong Jin ;
Shen, Ze Xiang .
NATURE COMMUNICATIONS, 2016, 7
[8]   Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling [J].
Chen, Chaoji ;
Wen, Yanwei ;
Hu, Xianluo ;
Ji, Xiulei ;
Yan, Mengyu ;
Mai, Liqiang ;
Hu, Pei ;
Shan, Bin ;
Huang, Yunhui .
NATURE COMMUNICATIONS, 2015, 6
[9]   High-Performance Sodium-Ion Pseudocapacitors Based on Hierarchically Porous Nanowire Composites [J].
Chen, Zheng ;
Augustyn, Veronica ;
Jia, Xilai ;
Xiao, Qiangfeng ;
Dunn, Bruce ;
Lu, Yunfeng .
ACS NANO, 2012, 6 (05) :4319-4327
[10]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)