Multi-Level Generative Chaotic Recurrent Network for Image Inpainting

被引:5
作者
Chen, Cong [1 ]
Abbott, Amos [1 ]
Stilwell, Daniel [1 ]
机构
[1] Virginia Tech, Blacksburg, VA 24060 USA
来源
2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021 | 2021年
关键词
DEEP; ALGORITHM;
D O I
10.1109/WACV48630.2021.00367
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel multi-level generative chaotic Recurrent Neural Network (RNN) for image inpainting. This technique utilizes a general framework with multiple chaotic RNN that makes learning the image prior from a single corrupted image more robust and efficient. The proposed network utilizes a randomly-initialized process for parameterization, along with a unique quad-directional encoder structure, chaotic state transition, and adaptive importance for multi-level RNN updating. The efficacy of the approach has been validated through multiple experiments. In spite of a much lower computational load, quantitative comparisons reveal that the proposed approach exceeds the performance of several image-restoration benchmarks.
引用
收藏
页码:3625 / 3634
页数:10
相关论文
共 51 条
  • [1] K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    Aharon, Michal
    Elad, Michael
    Bruckstein, Alfred
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) : 4311 - 4322
  • [2] CHAOTIC NEURAL NETWORKS
    AIHARA, K
    TAKABE, T
    TOYODA, M
    [J]. PHYSICS LETTERS A, 1990, 144 (6-7) : 333 - 340
  • [3] [Anonymous], 2017, ARXIV170204782
  • [4] 2-POINT STEP SIZE GRADIENT METHODS
    BARZILAI, J
    BORWEIN, JM
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 1988, 8 (01) : 141 - 148
  • [5] Bau David, 2020, ARXIV PREPRINT ARXIV
  • [6] Chen Cong, ROBUST UNSUPERVISED
  • [7] A Bayesian Perspective on the Deep Image Prior
    Cheng, Zezhou
    Gadelha, Matheus
    Maji, Subhransu
    Sheldon, Daniel
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 5438 - 5446
  • [8] Learning a Deep Convolutional Network for Image Super-Resolution
    Dong, Chao
    Loy, Chen Change
    He, Kaiming
    Tang, Xiaoou
    [J]. COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 : 184 - 199
  • [9] Fattal R, 2007, ACM T GRAPHIC, V26, DOI [10.1145/1276377.1276496, 10.1145/1239451.1239546]
  • [10] Deep Generative Adversarial Compression Artifact Removal
    Galteri, Leonardo
    Seidenari, Lorenzo
    Bertini, Marco
    Del Bimbo, Alberto
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 4836 - 4845