Effects of methane processing strategy on fuel composition, electrical and thermal efficiency of solid oxide fuel cell

被引:14
|
作者
Tu, Baofeng [1 ]
Qi, Huiying [1 ]
Yin, Yanxia [1 ]
Zhang, Tonghuan [1 ]
Liu, Di [1 ]
Han, Shuna [1 ]
Zhang, Fujun [1 ]
Su, Xin [1 ]
Cui, Daan [2 ]
Cheng, Mojie [3 ]
机构
[1] Shandong Univ Sci & Technol, 579 Qianwangang Rd, Qingdao 266590, Peoples R China
[2] Dalian Maritime Univ, Marine Engn Coll, 1 Linghai Rd, Dalian 116026, Peoples R China
[3] Chinese Acad Sci, Dalian Inst Chem Phys, 457 Zhongshan Rd, Dalian 116023, Peoples R China
关键词
Solid oxide fuel cell; Methane processing strategy; Fuel composition; Electrical efficiency; Thermal efficiency; Y2O3-STABILIZED ZRO2 ELECTROLYTE; ELECTROCHEMICAL OXIDATION; CH4-H2O SYSTEM; CARBON-DIOXIDE; STEAM; COKING; ANODES; GAS; EQUILIBRIA; GENERATION;
D O I
10.1016/j.ijhydene.2021.05.128
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Natural gas is a cheap and abundant fuel for solid oxide fuel cell (SOFC), generally integrating the SOFC system with methane pre-treating system for improving the stability of SOFC. In this paper, the accurate effects of methane processing strategy on fuel composition, electrical efficiency and thermal efficiency of SOFC are investigated based on the thermodynamic equilibrium. Steam reforming of methane is an endothermic process and can produce 3 mol of H-2 and 1 mol of CO from 1 mol of methane, and thus the electrical efficiency of SOFC is high at the same O/C ratio and equivalent fuel utilization, whereas the thermal efficiency is low. On the contrary, partial oxidation of methane is an exothermal process and only produces 2 mol of H-2 and 1 mol of CO from 1 mol of methane, and thus the electrical efficiency of SOFC is low at the same O/C ratio and equivalent fuel utilization, whereas the thermal efficiency is high. When the O/C ratio is 1.5, the electrical efficiency of SOFC is 55.3% for steam reforming of methane, while 32.7% for partial oxidation of methane. High electrical efficiency of SOFC can be achieved and carbon deposition can be depressed by selecting suitable O/C ratio from methane pretreatment according to the accurate calculation and analysis of effects of different methane processing strategies on the electrical efficiency and thermal efficiency of SOFC. (C) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:26537 / 26549
页数:13
相关论文
共 50 条
  • [31] Thermal modeling and efficiency assessment of an integrated biomass gasification and solid oxide fuel cell system
    El-Emam, Rami Salah
    Dincer, Ibrahim
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (24) : 7694 - 7706
  • [32] Partial oxidation of methane for internally reformed solid oxide fuel cell
    Hiei, Y
    Ishihara, T
    Takita, Y
    SOLID STATE IONICS, 1996, 86-8 : 1267 - 1272
  • [33] Effects of fuel processing methods on industrial scale biogas-fuelled solid oxide fuel cell system for operating in wastewater treatment plants
    Farhad, Siamak
    Yoo, Yeong
    Hamdullahpur, Feridun
    JOURNAL OF POWER SOURCES, 2010, 195 (05) : 1446 - 1453
  • [34] Effect of fuel composition on the performance of ceramic-based solid oxide fuel cell anodes
    Madsen, BD
    Barnett, SA
    SOLID STATE IONICS, 2005, 176 (35-36) : 2545 - 2553
  • [35] Thermal imaging of solid oxide fuel cell anode processes
    Pomfret, Michael B.
    Steinhurst, Daniel A.
    Kidwell, David A.
    Owrutsky, Jeffrey C.
    JOURNAL OF POWER SOURCES, 2010, 195 (01) : 257 - 262
  • [36] MODELLING THE INFLUENCE OF FUEL COMPOSITION ON SOLID OXIDE FUEL CELL BY USING THE ADVANCED MATHEMATICAL MODEL
    Milewski, Jaroslaw
    Badyda, Krzysztof
    Miller, Andrzej
    RYNEK ENERGII, 2010, (03): : 159 - 163
  • [37] Solid oxide fuel cell interconnect design optimization considering the thermal stresses
    Xu, Min
    Li, Tingshuai
    Yang, Ming
    Andersson, Martin
    SCIENCE BULLETIN, 2016, 61 (17) : 1333 - 1344
  • [38] Modeling of an anode supported solid oxide fuel cell focusing on thermal stresses
    Xu, Min
    Li, Ting Shuai
    Yang, Ming
    Andersson, Martin
    Fransson, Ida
    Larsson, Tara
    Sunden, Bengt
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (33) : 14927 - 14940
  • [39] Investigation of thermal radiation effects on solid oxide fuel cell performance by a comprehensive model
    Zeng, Min
    Yuan, Jinliang
    Zhang, Jian
    Sunden, Bengt
    Wang, Qiuwang
    JOURNAL OF POWER SOURCES, 2012, 206 : 185 - 196
  • [40] Thermal contact resistance in solid oxide fuel cell stacks
    Dillig, Marius
    Biedermann, Thomas
    Karl, Juergen
    JOURNAL OF POWER SOURCES, 2015, 300 : 69 - 76