CONGRUENCE IDENTITIES INVOLVING SUMS OF ODD DIVISORS FUNCTION

被引:0
作者
Merca, Mircea [1 ]
机构
[1] Univ Craiova, Dept Math, AI Cuza 13, Craiova 200585, Romania
来源
PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE | 2021年 / 22卷 / 02期
关键词
theta series; partitions; divisors;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, inspired by a classical connections between partitions and divisors, we investigate some congruence identities involving sums of the odd divisor function sigma(odd) (n) which is defined by sigma(odd) (n) = Sigma(d\n)(d odd) d. In this context, we conjectured that the congruence Sigma(infinity)(k=-infinity) sigma(odd) (n-k(3k - 1)/2 equivalent to{n (mod m); if n = j (3 j - 1)/2, j is an element of Z, 0 (mod m), otherwise. is valid for any positive integer n if and only if m is an element of {2,3,6}
引用
收藏
页码:119 / 125
页数:7
相关论文
共 6 条