A fixed-parameter algorithm for the vertex cover P3 problem

被引:38
作者
Tu, Jianhua [1 ]
机构
[1] Beijing Univ Chem Technol, Sch Sci, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
Combinatorial problem; Fixed-parameter algorithm; Vertex cover P-3 problem; Iterative compression; APPROXIMATION ALGORITHM; SET; COMPRESSION;
D O I
10.1016/j.ipl.2014.06.018
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A subset F of vertices of a graph G is called a vertex cover P-t set if every path of order t in G contains at least one vertex from F. Denote by psi t(G) the minimum cardinality of a vertex cover P-t set in G. The vertex cover P-t (VCPt) problem is to find a minimum vertex cover P-t set. The VCPt problem is NP-hard for any integer t >= 2. In this paper, we restrict our attention to the VCP3 problem and present a fixed-parameter algorithm with runtime O(2(k)k(3.376) + n(4)m) for the VCP3 problem. Here, n denotes the number of vertices, m denotes the number of the edges, k denotes the size of the vertex cover P-3 set searched for. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:96 / 99
页数:4
相关论文
共 22 条
[1]  
[Anonymous], TOCT
[2]   A 2-approximation algorithm for the undirected feedback vertex set problem [J].
Bafna, V ;
Berman, P ;
Fujito, T .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1999, 12 (03) :289-297
[3]   A LINEAR-TIME APPROXIMATION ALGORITHM FOR THE WEIGHTED VERTEX COVER PROBLEM [J].
BARYEHUDA, R ;
EVEN, S .
JOURNAL OF ALGORITHMS, 1981, 2 (02) :198-203
[4]  
Bondy J. A., 2008, Graph Theory with Applications
[5]   On the vertex k-path cover [J].
Bresar, Bostjan ;
Jakovac, Marko ;
Katrenic, Jan ;
Semanisin, Gabriel ;
Taranenko, Andrej .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (13-14) :1943-1949
[6]   Minimum k-path vertex cover [J].
Bresar, Bostjan ;
Kardos, Frantisek ;
Katrenic, Jan ;
Semanisin, Gabriel .
DISCRETE APPLIED MATHEMATICS, 2011, 159 (12) :1189-1195
[7]   A primal-dual interpretation of two 2-approximation algorithms for the feedback vertex set problem in undirected graphs [J].
Chudak, FA ;
Goemans, MX ;
Hochbaum, DS ;
Williamson, DP .
OPERATIONS RESEARCH LETTERS, 1998, 22 (4-5) :111-118
[8]  
Downey RG., 2012, MG COMP SCI, DOI 10.1007/978-1-4612-0515-9
[9]   A generalization of Nemhauser and Trotter's local optimization theorem [J].
Fellows, Michael R. ;
Guo, Jiong ;
Moser, Hannes ;
Niedermeier, Rolf .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2011, 77 (06) :1141-1158
[10]  
GUO J, 2006, THESIS FRIEDRICH SCH