A fixed-parameter algorithm for the vertex cover P3 problem

被引:37
作者
Tu, Jianhua [1 ]
机构
[1] Beijing Univ Chem Technol, Sch Sci, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
Combinatorial problem; Fixed-parameter algorithm; Vertex cover P-3 problem; Iterative compression; APPROXIMATION ALGORITHM; SET; COMPRESSION;
D O I
10.1016/j.ipl.2014.06.018
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A subset F of vertices of a graph G is called a vertex cover P-t set if every path of order t in G contains at least one vertex from F. Denote by psi t(G) the minimum cardinality of a vertex cover P-t set in G. The vertex cover P-t (VCPt) problem is to find a minimum vertex cover P-t set. The VCPt problem is NP-hard for any integer t >= 2. In this paper, we restrict our attention to the VCP3 problem and present a fixed-parameter algorithm with runtime O(2(k)k(3.376) + n(4)m) for the VCP3 problem. Here, n denotes the number of vertices, m denotes the number of the edges, k denotes the size of the vertex cover P-3 set searched for. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:96 / 99
页数:4
相关论文
共 22 条
  • [1] [Anonymous], TOCT
  • [2] A 2-approximation algorithm for the undirected feedback vertex set problem
    Bafna, V
    Berman, P
    Fujito, T
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 1999, 12 (03) : 289 - 297
  • [3] A LINEAR-TIME APPROXIMATION ALGORITHM FOR THE WEIGHTED VERTEX COVER PROBLEM
    BARYEHUDA, R
    EVEN, S
    [J]. JOURNAL OF ALGORITHMS, 1981, 2 (02) : 198 - 203
  • [4] Bondy J. A., 2008, Graph Theory with Applications
  • [5] On the vertex k-path cover
    Bresar, Bostjan
    Jakovac, Marko
    Katrenic, Jan
    Semanisin, Gabriel
    Taranenko, Andrej
    [J]. DISCRETE APPLIED MATHEMATICS, 2013, 161 (13-14) : 1943 - 1949
  • [6] Minimum k-path vertex cover
    Bresar, Bostjan
    Kardos, Frantisek
    Katrenic, Jan
    Semanisin, Gabriel
    [J]. DISCRETE APPLIED MATHEMATICS, 2011, 159 (12) : 1189 - 1195
  • [7] A primal-dual interpretation of two 2-approximation algorithms for the feedback vertex set problem in undirected graphs
    Chudak, FA
    Goemans, MX
    Hochbaum, DS
    Williamson, DP
    [J]. OPERATIONS RESEARCH LETTERS, 1998, 22 (4-5) : 111 - 118
  • [8] Downey RG., 2012, MG COMP SCI, DOI 10.1007/978-1-4612-0515-9
  • [9] A generalization of Nemhauser and Trotter's local optimization theorem
    Fellows, Michael R.
    Guo, Jiong
    Moser, Hannes
    Niedermeier, Rolf
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2011, 77 (06) : 1141 - 1158
  • [10] GUO J, 2006, THESIS FRIEDRICH SCH